
WHITEPAPER

Simplify Mainframe
Modernization:
Navigate 8 Key Challenges
with Confidence

Abhijit Vijayrao PadegaonkarAuthor:

25-June-24Date:

Contents

Inappropriate Steps Towards Modernization

Lack of Proper Assessment of The System

Non-inclusion of SME

Lack of Documentation

Lack of Awareness of Current Architecture

Insufficient Time Allotted for Reverse Engineering

Non-consideration of Parallel Testing

Monitored usage of automatic code conversion

Executive Summary

Introduction to Mainframe

Challenges in the current mainframe world

Brief Solution

Common Challenges in
Implementing the Solution

Conclusion

06

07

08

09

10

11

13

13

03

04

05

05

06

15

3

Executive summary
The IT Industry has long faced challenges in migrating outdated mainframe components to new,

modern technologies. This process is often difficult, with some companies even reverting to their

old systems after failed attempts.

This paper talks more about:

The common reasons
for migration failures

Steps to take for a
successful transition

The selective use of a hybrid
modernization approach

The information contained in this paper is intended for:

This will help to carve out a systematic approach towards modernization with an increased

level of confidence.

Businesses planning to
migrate mainframes to
modern technology

Technologists looking to
modernize mainframe systems
for their organizations

4

Introduction to mainframe
Mainframe systems have been the backbone of computing technology for decades, evolving over time to

meet growing demands. The initial mainframe system introduced in the 1940s weighed a few tons and

was as big as a large room. Over time, they evolved, moving from vacuum tubes to magnetic tapes, and

eventually incorporating the COBOL programming language in the late 1950s. Today, mainframes

support not only COBOL but also modern languages like Java, C, C++, assembler, etc.

Thus, the mainframe super-giant has been serving business processing for more than 75 years now. Every

technology has its trade-offs, and mainframes are no exception. In some cases, the drawbacks

overshadow the benefits. It's time to seriously consider newer options that can meet, and often exceed,

the performance of these older systems.

5

Challenges in the current
mainframe world
Some important factors affecting the continued usage of mainframes are:

High operating and
infrastructure cost

01

Dead, unused, or
unreachable codes

02 Aged programs not
amended for decades

04

High maintenance
cost

03

Less user-friendly and
monolithic architecture

05

Scarcity of skilled mainframe developers and operation engineers07

Outdated programming
languages and syntaxes

06

Brief Solution
Cloud computing, specifically Infrastructure as a Service (IaaS), has evolved significantly in recent years.

This technology offers a future in computing that is fast, reliable, secure, scalable, and easy to maintain.

Service providers can efficiently manage applications or data on such cloud platforms without concerns

about infrastructure, security, and dependability. Many workloads are now being migrated to such

cloud-native platforms, which provide highly customized setups per the requirements. So why not

mainframes?

6

The tech industry has been working on shifting mainframe systems to the cloud. Although the cloud

platform doesn’t offer a complete solution for mainframes, a systematic approach can relieve much of the

workload from the mainframe. As a result, the industry is making considerable efforts to migrate the

mainframe workload, which indeed has become a bottleneck for business growth.

Such technology migration requires extensive planning and preparation for execution. Nevertheless, there

have been quite a few cases where businesses had to revert to mainframes due to migration failures.

Common challenges in
implementing the solution
Here are eight common challenges that can pose substantial risks to modernization projects. These

risks should be mitigated before starting the migration process.

In many cases, customers and vendors tend to hurry the migration process due to various reasons

such as:

This often leads to inappropriate steps being taken towards mainframe modernization.

• Clients want to quickly switch to the new system to show cost savings in the financial year.

• They aim to become market leaders in the use case of mainframe modernization.

• Clients may not fully understand the complexity and repercussions of migrating mainframes to

modern technology.

Inappropriate steps towards modernization

Velocity matters more than speed

01

7

• Budget and schedule failure

• Modernizing redundant and dead code into the target system, resulting in increased

complexity in futuristic maintenance

• Modernizing applications to be demised, leading to additional costs

Risks

Taking a step-by-step approach helps reduce the amount of unnecessary code that gets

transferred to the new system. It also ensures that non-essential or outdated code isn’t included.

Follow these steps:

• Identify and assess the application to be modernized

• Remove dead code/dead components from the system/application (Retire)

• Identify functions to be retained on the mainframe (Retain)

• Identify functions to be replaced by other full-fledged products (Replace)

• Migrate remaining components into the target system (Rebuild)

Solution

A thorough assessment of the application/system to be migrated is crucial to the success of a

modernization program. It gives an overall idea of the application, such as:

• Inventory details

• Call graphs

• Complexity of the application

• High-level view of the system architecture

• Database and file structures

• Interfaces and their communication paths

Lack of proper assessment of the system

Introspection plays a more vital role than retrospection

02

8

Without a proper assessment, you risk:

Risks

• Implementing an inappropriate solution

• Overlooking older components

• Having an incomplete view of the impact on other applications

• Budget and timeline failure

This information is enough to decide upon tentative target solutions and modernization

methodology. It helps in profound planning, which reduces the risk of failure at later stages of the

program. It also helps determine modernization estimation, roadmap, ROI, and similar matrices.

This approach instills a high level of confidence in the customer, who would otherwise remain

uncertain until the first set of modernized applications is delivered.

There are three approaches to assessing the entire application: tool-based, questionnaire-based,

and hybrid. A long-term vision for the application's status is crucial in decision-making. For

instance, if an application is expected to be retired before reaching its ROI or breakeven point,

migration may not be a viable business option. Such vulnerabilities can be effectively identified

during the assessment phase.

Solution

Many technical and functional SMEs are already tied up with ongoing projects, making them

unavailable or partially available for the modernization project. Going ahead with a modernization

project without a dedicated subject matter expert (SME) with comprehensive system knowledge is a

classic recipe for disaster.

Lack of subject matter experts (SMEs)

There is no need to reinvent the wheel

03

9

• Directionless project execution in silos

• Potential gaps in documentation, development and quality assurance (QA)

• Identification of issues at a very later stage of the project

Risks

• A fragmented and incomplete knowledge base

• Increased risk for future maintenance projects

Risks

SME knowledge is required at every stage of the modernization program, whether it’s manual

rewriting or automated code conversion. Their experience working on the existing system helps in

replicating the functionality on the target system. The SMEs’ functional and technical knowledge of

the system helps design and plan better. They can also help validate the outcome at every stage of

modernization. Therefore, anything that is missed can be corrected before it greatly impacts the

overall modernization program. Hence, a dedicated technical and functional SME is a must in all

modernization programs.

Solution

As software and business solutions have evolved over the decades, the processes surrounding them

have, too. However, mainframe systems are older, and comprehensive documentation is often

lacking. This has long been a challenge in mainframe development programs, as many systems do

not have up-to-date functional specifications and units, nor do they have integrated test cases.

Lack of documentation

The faintest ink is sharper than the sharpest memory

04

10

As part of the modernization process, creating functional documentation and unit test

cases/results during the reverse engineering phase is crucial. This helps test the application in the

target system and creates the base for integration testing. Functional documentation is created as

part of the reverse engineering mentioned above. Test cases can be created by testing the

modules in the development region. SMEs should validate all the documentation created during

this phase.

Solution

Solution

Mainframe systems are large and often contain decades of technical debt due to their complexity

and numerous interfaces. Knowing how these interfaces integrate with the core mainframe system

is paramount for smooth migration. The more interfaces involved, the more complex the migration

becomes.

Lack of awareness of the current architecture

Self-realization is immense power and energy

05

This complexity can affect the sequence and planning of application modernization.

Risks

Knowing the current architecture inside out plays a pivotal role in migration decision-making, such as:

• Application migration priority and sequencing

• Pre- and post-migration interface connectivity

• Communicating with and from applications retained on the mainframe

• Service-level agreements (SLAs) to feed and get feed from the interfaces

• Impact of mainframe infrastructure cost on applications retained on the mainframe

• Overall timeline to migrate to the new system

11

The mainframe may have very old components that have not been updated for decades. In some

cases, only the load module is available, and the source code is not. As COBOL, a procedure-oriented

language, is the primary language for mainframe development, mapping it with current

object-oriented, open-source technology is a huge challenge. Moreover, for any other migration,

there are at least a few commonalities between the source and the target, making it easier to

migrate. However, in the case of mainframes, the source and target are at the extreme ends of the

technology. Thus, there is very little scope for any error in reverse engineering.

Insufficient time for reverse engineering

Take time to sharpen the axe

06

• Generating incorrect documentation

• A cascading effect of incorrect documentation throughout the project

Risks

Mainframe migration is different from any other migration. Hence, the thumb rule used to estimate

other migration projects cannot be used for reverse engineering estimates. Eventually, reverse

engineering must be estimated properly by referring to the parameters such as:

• Types of components

• Complexity

• Lines of code

• Number of interfaces

• Criticality of the application to be migrated

Solution

Taking a certain percentage of the forward engineering estimates for assessing reverse engineering is not

a good idea. Guesstimating based solely on the target system is not feasible; the legacy code is the only

complete and functional source that defines the overall system. The target system must be derived from

12

this code, so reverse engineering requires additional time and focus. However, applying agile methodologies

to reverse engineering is often debated. Agile works well in a known system, but this is rarely true in

mainframe modernization projects. Therefore, delivering story points based on functionality, lines of code

(LOC), complexity, or the number of programs is often imprecise.

Accurate estimates can only be made after a thorough system assessment, as described in point 2 above. At

best, estimates can be refined if technical and functional SMEs are available and information-rich

documentation is accessible.

There are multiple approaches in which reverse engineering can be planned.

Batch flow-dependent:
Reverse engineering is carried out
according to job flow. Thus, the
jobs, programs, transactions, and
other technical components
encountered are reverse
engineered as a single entity. This
helps enhance functional
knowledge as progress is made
into the next level of
dependencies. However, common
functions may have to be visited
repeatedly while reverse
engineering different batch jobs.

Transaction-driven:
Considering the
transaction flow, all
technical components
entering the flow are
reverse engineered
together as a single
entity. This is a
data-centric approach,
and understanding the
data flow improves with
progress.

Functionality-based:
Programs and other
components pertaining
to one function are
clubbed together for
reverse engineering.
One consolidated
document is prepared
for the same, which can
be treated as a
requirement document
for ongoing projects.

01 02 03

A suitable approach must be brainstormed after the assessment is done. It depends upon the architecture of

the system.

Typically, a technical developer can perform reverse engineering as per the following matrix.

Simple COBOL program

Medium Complex COBOL program

Complex COBOL program

600 Lines per day

500 lines per day

350 lines per day

Note: Complexity is a parameter that changes from case to case

13

Testing plays an important role, especially when the entire system is being migrated. For any regular

development project, testing is only done for the developed and impacted code. But that is not

sufficient for such a huge transition project. Mainframe applications are integrated with multiple

upstream and downstream applications. Hence, end-to-end testing must be done, including all

interfaces.

Lack of parallel testing

Well-tested products always catch customers’ eyes

07

• Tendency of functionality failure

• Identification of bugs in a higher environment

Risks

Parallel testing must be planned to ensure the correctness of the testing, i.e., testing on the

mainframe and the target system. The results of such an intermediate testing phase give confidence

to all technical and business stakeholders. Any defects identified during this phase must be fixed per

the incident life cycle. It's recommended that parallel testing covers at least three month-end

processing cycles.

Solution

Clients always want to migrate quickly, and often have a very ambitious timeline. Thus, tools that

convert COBOL code into the target language are preferred to meet the timeline.

Monitored usage of automatic code conversion

A balanced use of accelerators and brakes makes it a pleasant drive

08

14

If these tools malfunction, they can cause major setbacks.

Risks

It’s important to monitor the use of automatic code converters. Consider the following:

For complex codes, a hybrid model that combines manual rewriting with automatic conversion for

simpler programs is often the best approach.

Solution

• The tool processing cost is based on the number of lines in the code. Hence, only codes filtered

through the process mentioned above should be fed to the tool for conversion.

• The programs fed to the tool must be simple. The tool’s code conversion efficiency is 60%, so

analyzing the tool output for simple programs becomes easy.

• Technical and functional expertise is required to convert complex codes, preferably manual

rewrites.

• The tool performs a technical conversion of the program, resulting in a like-for-like

transformation. The output offers no additional benefits over the target system.

• Functional SMEs’ availability to validate the tool’s outcome is key to the success of code

conversion.

15

Conclusion
Mainframe systems are inherently complex and modernizing them adds an extra layer of challenge.

Upgrading outdated technology takes time and requires careful planning. Delaying modernization only

makes the process harder. Therefore, starting early is key to a successful transition. While the challenges

mentioned above are significant, they can be addressed with thoughtful and well-structured actions.

The following steps can help ensure a smoother modernization process:

Retire:

Review the system to
identify old, unused
components and remove
them. This immediately
reduces storage needs and
simplifies the migration.

Retain:

Identify critical components
that need to remain on the
mainframe, particularly
those handling core
processing. Remove these
from further analysis,
focusing only on their data
connections. These
components can undergo
in-place modernization.

Reuse:

For parts of the system that
can be reused, migrate
them to the cloud. Cloud
service emulators can
support this transition.

Replace:

Where possible, replace
older functions with more
advanced products that fit
current business needs.
Establish connections
between interfaces and set
parameters for
compatibility.

Rebuild:

After reducing the system's
complexity through the
steps above, the remaining
components can be
migrated to the new
system, either through
manual rewrites or
automated code conversion.

Technological modernization:

This includes upgrading components like
CICS, modernizing batch processes, or
rehosting all applications outside the
mainframe using an emulator

Storage modernization:

Moving data storage to the cloud can
significantly reduce costs

In-place modernization:

Applications can be modernized while still
on the mainframe by upgrading
technologies like compilers or enhancing
system compatibility and performance

APIfication:

Making mainframe programs accessible
through APIs can extend their usefulness
and increase flexibility

16

A successful modernization requires the expertise of subject matter experts (SMEs) who understand the

system’s entire functionality. Their insights are essential in determining which components fit into each of

the above categories.

A thorough system assessment will reveal the technical specifics, such as component complexity, dead or

unreachable code, and program and data flow diagrams. Discussions with SMEs and analysis of the

outcome will also help generate the technical architecture diagram.

Effective use of available documentation and functional discussions and sessions with SMEs will help

generate functional flows, data flows, and overall business knowledge.

After reducing the inventory, manual rewrite or auto code conversion tools can generate the code in the

target system. With reduced inventory, the pros and cons of both methodologies are greatly diluted.

Parallel testing of the entire application for at least three months ensures the correctness of the result. It

adds overhead to the budget but is negligible compared to the advantage. Allow three months to execute

month-end cycles to fix any outstanding issues.

Another advantage of taking such small, healthy steps is that the business can reap the benefits after

completing each step. This is called “functional modernization,” as “functionality” is at the epicenter of

all decision-making. Various types of mainframe modernization that can be considered are:

By following these steps, mainframe modernization can be a well-planned, gradual process that leads to

long-term success.

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business models,

accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than 700 clients,

LTIMindtree brings extensive domain and technology expertise to help drive superior competitive differentiation, customer experiences, and business

outcomes in a converging world. Powered by 81,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a

Larsen & Toubro Group company — solves the most complex business challenges and delivers transformation at scale. For more information, please

visit https://www.ltimindtree.com/

