
WHITEPAPER

Enabling Data Agility:
A Comprehensive Approach to
Modernize your Data, AI, and
Application Workloads
with Snowflake

Muthusivan Vellapandian
Author

Contents
Abstract

Introduction

Transitioning SAP HANA workloads to Snowflake

Transitioning the SAP BW workload to Snowflake

Handling currency conversion in Snowflake

Level up the migration with Snowflake features

Conclusion

About the Author

• Evaluating the migration strategy

• Migration object inventory

• Migration accelerators

• Optimization

• Code change management

• Analyzing the SAP BW landscape

• Re-designing for optimal performance

• One big table vs star schema approach

• Materialization strategy

• Dynamic tables for pipeline simplification

• Tags for governance

• Streamlit apps for data quality

• AI/ML for SAP use cases

1. Environment strategy

2. Extracting changed models from SAP HANA for code reconciliation

3. Code freeze period

4. Synchronized code management

3

4

5

15

21

23

27

28

6

8

9

11

13

16

16

19

20

24

25

25

26

13

13

14

14

Abstract
This white paper explores the modernization of complex SAP Analytics workloads to

Snowflake Data Cloud. It outlines migration strategies and highlights Snowflake’s

key features that enable a secure and cost-effective transition. It also offers

proactive solutions to common migration challenges and best practices for success.

In addition, it details how to leverage Snowflake's advanced features and

integrated AI/ML capabilities to enhance data initiatives.

3

Introduction
As the digital world advances, businesses need diverse, adaptable, efficient, and performant workloads.

Traditional on-premises solutions often fail to meet modern data demands due to limited scalability, high

costs, and slow query speeds. This has driven interest in modernizing to Snowflake, capable of handling

data, AI, and application workloads on a single platform.

Snowflake manages diverse data tasks from data warehousing and data lakes to real-time processing and

AI/ML for data science. The Snowflake platform has evolved, adding features that simplify the transition.

However, it usually requires migration accelerator utilities to accelerate, reduce risk, and build confidence.

These accelerators analyze the analytics object base, convert the code, migrate and validate data, and

provide testing evidence. While they accelerate the code and data migration to Snowflake, ensuring

compatibility with new features for optimal use is crucial.

Migration from legacy databases to Snowflake has challenges. Despite migration accelerators minimizing

risk, careful planning, understanding features and capabilities, and a well-defined strategy are essential to

minimize disruption and ensure optimization. Key considerations include mapping equivalent features,

leveraging advanced cloud capabilities, transforming data, redesigning schemas, optimizing queries, and

ensuring data integrity and consistency. This white paper details transitioning two challenging workloads:

SAP HANA and SAP BW to Snowflake.

4

Transitioning SAP HANA
workloads to Snowflake
SAP HANA is well known for its in-memory computing power. It has been a cornerstone of success for

enterprises seeking real-time analytics and transactional processing. While it enables lightning-fast

computation, it often demands a significant investment upfront in terms of hardware and licensing.

Despite all these capabilities in SAP HANA, the complex processing that arises during the month-end and

year-end raises concurrency issues where multiple user queries and processes lead to conflicts and delays.

It requires prioritizing the SQL queues, assigning dedicated computing resources for complex queries, etc.

To overcome resource contention, large complex models are broken into multiple sub-processes to

overcome memory limits. Such workarounds increase the number of objects and lead to greater

environment complexity. In certain circumstances, the SAP HANA infrastructure must be upgraded to

process complex and voluminous data models to meet business expectations.

Snowflake’s agility and its capabilities provide a compelling alternative to SAP HANA’s on-premises

constraints. By leveraging the Snowflake cloud platform capabilities, customers can accelerate their

analytics initiatives, driving innovation and maintaining a competitive edge in today’s environment.

The data is physically stored in the RAW layer and the models built across other layers are typically just

views in most scenarios. These models act as a virtual definition on how they get processed at the

runtime for near real-time reporting. Here are some key considerations for migrating such SAP HANA

semantics to Snowflake.

A typical SAP HANA data architecture includes the following layers.

RAW ODS INTEGRATION/REPORTING PRESENTATION/CONSUMPTION

5

Selecting the right migration strategy is crucial to ensure a smooth transition, minimize disruptions and

maximize benefits. Depending on the complexity, interdependency and business impact, the right

migration approach must be chosen that reduces risk. There are two main strategies for any cloud

migration: Migration in one-go and migration in waves. Depending on the nature of the SAP HANA

analytics landscape, an appropriate strategy needs to be chosen. The common strategy is to do the

migration by waves as it reduces risk and provides enough flexibility for the migration team to adjust to

the dynamics. However, the typical challenges in wave migration for SAP HANA are:

Evaluating the migration strategy

If the models are highly interdependent across applications or data products, then migration in wave is not

feasible. There is always temporary model replication effort such as loading the final output of the

interdependent model to Snowflake temporarily to complete a certain wave. The actual model migration

happens during the actual application migration it belongs to. The higher the magnitude of

interdependencies, the greater the temporary efforts with a higher risk and potential migration failure.

Determining the interdependency factor is key for a smooth and successful migration.

Cross dependency between apps
or data products

01

KPI borrowing across models
results in model nesting and
interdependence

02

Requiring a two-step approach
for cross-dependent models

• Temporary model data
replication

• Actual model code and data
migration

03

6

Similarly, there are two migration approaches for SAP HANA: Lift-optimize-shift and re-engineering. A

detailed due diligence and a proof of concept (MVP) leveraging both approaches and evaluating the key

parameters with the POC results is mandatory and crucial for the way forward. The table below is a

comparison of critical parameters for decision-making.

Re-engineeringLift-Optimize-Shift Parameters

Additional ~20-30% of effort of client’s SME’s-Minimum client SME involvement overall Analysis & Design

~15 % automation possible, involvement
of Clients SME’s

~30-40% automation possibleBuild

Model needs to be evaluated at each step,
needs involvement of Client’s SME’s as well

Validation

No dedicated optimization effort is requiredIdentify the bottlenecks and tune for the forklifted models.
It needs to be a dedicated track/POD

Optimization

Multiple times, it will also require additional
effort as structures will vary in Snowflake

2 times (initial build and during UAT). No technical
issues as structures will match with HANA AS-IS

Data loads

Manual efforts
Based on our past migration POCs, effort in
Reengineering is 1.5 times or greater

Speed

Re-engineering may lead to drop and build
new models to overcome inter-dependencies

Model deployment follows inter-dependencies-Inter-Dependencies-

As models match AS-IS validation at aggregate level
can be done to proceed with Dashboard validation

Automation friendly approach with ~30-40%
automation possible

A
p

p
lic

at
io

n
/D

at
a

Pr
o

d
u

ct
s

In
te

rd
ep

en
d

en
ci

es

Low

High

HighMigration Timeline

Migration in Waves

Migration in one-go

Figure 1: Migration timelines for interdependencies

Table 1: Comparison of critical parameters for lift-optimize-shift vs re-engineering

7

While lift-optimize-shift accelerates the migration, not all the SAP HANA objects can be migrated in this

fashion. There will always be re-engineering required, especially relying on native features in models such

as star join, attribute views, etc. Each approach has its pros and cons. However, the key difference is the

quantum of effort needed to optimize the models–this is a critical success factor. The diagram below

illustrates the optimization effort vs timeline in SAP HANA to Snowflake migration.

O
p

ti
m

iz
at

io
n

 E
ff

o
rt

s

Low

High

High

Greenfield

Migration Timeline

Lift-Optimize-Shift

Re-engineering

Figure 2: Optimization effort vs timeline in SAP HANA to Snowflake migration

The object inventory is essential for a smooth lift-optimize-shift migration to Snowflake, driven by

collecting system details from SAP HANA. The objective includes:

Migration object inventory

Identifying the number of objects
involved (scope)

01

Object count by data
products/subject area

02 Object inventory rationalization
(decommissioning)

04

Current migration status03

8

Key information in the object inventory should include:

SAP HANA object name and path01

Equivalent Snowflake
database/schema, strategically
mapped by architects

02 Object type: Defines the
object type (e.g., calc
views etc.)

04

Application/data products mapping03

Complexity05 Cross dependency06

Scope/out of scope07

Migration accelerators play a significant part in the lift-optimize-shift migration approach. The purpose of

such accelerators is to speed up migration activities, reduce effort and timelines, and consistently convert

the SAP HANA objects to equivalent Snowflake objects. Snowflake provides a conversion utility to speed

up the migration, providing a good automation rate with minimal issues.

Migration accelerators

Code Conversion
Accelerator

XML SQL

Business Rules Business Rules

Currency Logics Currency logics

Non-Functional
Requirements

Non-Functional
Requirements

Parameterized
Views

Parameterized
views

Figure 3: Role of migration accelerators

9

While the accelerators convert the code to equivalent Snowflake objects, they will provide a workable

version on Snowflake. Significant remediation efforts are required to unit test the converted code and

match the data across platforms. The code functionality gets carried forward to Snowflake such as

business logic and rules, but greater effort is required to optimize the code in Snowflake to meet

non-functional requirements. As illustrated in the diagram above, not all the functionality gets converted

by the accelerators. The semantics set in the graphical UI and any properties such as cardinality, SAP

HANA native aggregation on a measure such as SUM/MAX, etc. do not get converted to their SQL

equivalent but require significant remediation. The diagram below illustrates some of the manual

intervention and remediation required while using accelerators.

Figure 4: Manual intervention and remediation required while using the accelerators

SQL Readability Cardinality

SQL Code Flattening

Column Ordering

Dates/Timestamps/Time zone
conversion

Graphical views with
Placeholders to UDFs

Dynamic aggregation

Match patterns

Converting Jf to CASE
or IFF Statement

Adding/Subtracting
with NULL

HANA NULLs and EMPTY
Space in data

Models with Star
join optimization

XML
Table
Functions

10

Optimization is crucial for migrating from SAP HANA to Snowflake due to their architectural differences.

Without it, Snowflake workloads may suffer from poor performance and higher costs due to inefficient

resource use. The lift-optimize-shift approach needs dedicated optimization efforts, as forklifted models

only transfer code functionality, not non-functional aspects. Two key optimization types are:

Optimization

SAP HANA models use graphical nodes for data processing, which become lengthy and

complex SQL queries after conversion. These subqueries can be hard to manage and may

lead to compilation issues. Eliminating subqueries and using common table expressions

(CTEs) are essential for code optimization. While some code-length optimization can be

automated, manual validation and fixes are often needed.

Code-length optimization

The conversion process does not guarantee completely optimized code for Snowflake's

environment. In simpler terms, the code base can be forklifted from SAP HANA with

minimal fine-tuning to run on Snowflake's architecture. As many scenarios arise there

could be bottlenecks in migration, and they can cause sluggish performance during

process execution in Snowflake. Resolving this involves tuning the models in a way that

leverages Snowflake's strengths, resulting in a significant performance boost. Sample

patterns identified in the migration scenarios are as follows:

Performance optimization

Pattern 1 Aggregation against the primary key

When SQL includes the primary key in the SELECT statement and uses aggregate functions like AVG,
SUM, or MAX, it results in the same number of rows with or without a GROUP BY, making
aggregation irrelevant and inefficient. This is particularly problematic for large tables like BSEG,
CDPOS, and MSEG, as Snowflake scans all rows unnecessarily. Removing aggregate functions and
GROUP BY statements in such cases improves query performance.

11

Pattern 2 Repeating HANA graphical view nodes

Forklifting HANA Graphical views (XMLs) to SQL results in repeating identical subqueries, causing
Snowflake to generate costly query plans. Each subquery is compiled individually, leading to high
compilation and execution times. To address this, use reusability components like CTEs or temporary
tables. For stored procedures, create temporary tables and reuse them in subqueries.

Pattern 3 Very high compilation time in the migration scenarios

When SQL queries have a compilation time significantly higher execution time (2x or more),
performance issues arise as the execution is much faster but the compilation remains costly. This
problem often occurs with lengthy SQLs from forklifted graphical views, which involve many nested
views and complex dependencies. To improve performance, rewrite and flatten the SQL by referring
to tables directly, reducing or eliminating complex dependent views, and ensuring top-level views
only compute necessary objects and columns.

Pattern 4 Sub-optimal master data look up in the migration scenarios

Sub-optimal master data lookups occur when querying complex and highly nested models, causing
Snowflake to compile and compute all logic, unlike SAP HANA. This results in inefficiency as it
involves unnecessary views and tables. To improve performance, rewrite the SQL to directly fetch
master data from base models or raw tables instead of using complex calculation views.

12

Especially in a lift-optimize-shift migration approach, popular for transitioning SAP HANA analytics to

Snowflake, a well-planned strategy to manage the ongoing code changes in the models is crucial.

Depending on the landscape, the strategy varies but cannot be ignored in the planning. Key aspects to

consider for code changes are as follows:

Code change management

Code, raw data, transformations and BI reports and dashboards should be from the same

snapshot, and a dedicated and static environment (SAP HANA and Snowflake) should be

assigned for development and unit testing. The difference in the versions and

misalignment in any of these layers cause cascading issues and result in a longer time to

de-bug and perform root cause analysis (RCA). These issues turn into potential risks.

Environment strategy

It is crucial to extract and identify code changes from SAP HANA for a given time frame

and make this information publicly available via Power BI/Tableau for stakeholders.

Changes can vary, including enhancements or new data products. To ensure a smooth

transition to Snowflake, follow these steps after extraction:

• Use a comparator utility to identify changes in graphical nodes by comparing XML or
SQL versions.

• Collaborate with SAP HANA developers to detect changes in calculations or joins.

• Monitor row counts before and after extraction.

• Compare KPI aggregation values and graphical node counts before and after code
reconciliation.

Extracting changed models from SAP HANA for code reconciliation

13

Establishing a code freeze strategy is vital for smooth migration especially for the lift-

optimize-shift migration approach. The following are the key migration scenarios for which

freeze is crucial:

• During user acceptance testing and cutover period, the code freeze including the
critical fix is important.

• Data product migration with too many interdependencies.

• Finance data products during quarter/year-end reconciliation process.

Code freeze period

Synchronized code management

Code freeze is not ideal during the migration due to business impact and demands. Critical

bug fixes or external dependencies (e.g., with invoice system integrations) are a few

scenarios that demand synchronized development between SAP HANA and Snowflake.

Such a dual maintenance strategy not only helps maintain the code in sync between both

the systems but also helps the developers to adopt the new platform and align the data

product teams to the new development life cycle. It is not recommended to adopt this

strategy during the beginning stage of the migration, rather adopt it during system

integration testing (SIT) phase or during a dedicated code reconciliation phase as per the

master plan.

14

Extractors

dso/adso

Composite
Providers/

Transformations

BEX

Infocubes

Raw

Integrated

Presentation
HANA Views

(If Applicable)

Figure 5: Mapping SAP BW layers to Snowflake data layers

Transitioning the SAP BW
workload to Snowflake
While SAP HANA migration focuses on moving memory operations and real-time analytics to Snowflake,

SAP BW migration to Snowflake involves transitioning a classical data warehouse environment with

precomputed data models and processes. For building data models, SAP BW relies heavily on its native

features such as info cubes/Data Store Objects (DSO) for transformations, it involves re-thinking the data

architecture layers that align to standard Snowflake data architectural layers. Unlike SAP HANA, the

lift-optimize-shift migration approach for SAP BW is likely to bring more technical debts to Snowflake due

to the number of layers involved in transforming the data from a raw state to being consumption-ready.

Transitioning BW architecture to Snowflake may require re-design for Snowflake on how the data is

transformed for better performance and cost. The picture below is an illustration of mapping the SAP BW

layers to Snowflake data layers.

15

Performing due diligence in the SAP BW landscape is the key phase in the modernization journey. It

requires cataloging all the objects in an inventory sheet listing the object types, associated application

teams, owner, etc. The outcome of the due diligence should include, but is not limited to, the following:

Analyzing the SAP BW landscape

• Object inventory sheet.

• Functional specification for each data product/application.

• Technical specifications for each data product/application.

1. Revisiting the functional logics that need fixing.
2. Refine the calculations for process improvements as applicable.
3. Add new KPIs/calculation logic to meet the business expectations.

SAP BW multi-tier architecture does not translate directly to Snowflake data architecture standards.

Significant design considerations are required to bridge the gap between the two platforms to unlock the

Snowflake’s potential. Here are some of the re-design aspects.

Re-designing for optimal performance

16

• Object inventory sheet.

• Functional specification for each data
product/application.

• Technical specifications for each data
product/application.

1. Revisiting the functional logics that
need fixing.

2. Refine the calculations for process
improvements as applicable.

3. Add new KPIs/calculation logic to
meet the business expectations.

1. Extractor decoding (standard/custom
extractors). Standard extractor
decoding is more complex than
custom. Hence, it requires a
dedicated analysis effort.

2. Source to target mapping.

3. Naming conventions.

4. Incremental data loading of models

and design.

5. Identifying the primary key for the

models to enable incremental data

load.

6. Define clustering keys.

7. View vs table option for the logical
steps involved in the model building.

8. Query tagging configurations.

9. Non-functional requirements and
alignment.

01
Naming convention
It is important to rename the objects with business relevance and descriptions in Snowflake,
aligning to the target platform standards instead of following the BW mindset. In particular, the
L1, L2, etc. references to identify the BW layers should be eliminated. The naming convention
should be consistent across the project teams. It should be enforced programmatically by DevOps
pipelines.

02
Model layer optimization
It is quite common in SAP BW to break a large process into dedicated subprocesses for each
region or source ID to overcome performance or concurrency issues. Forklifting such subprocesses
to Snowflake produces suboptimal and expensive processing. The key design decision should be
to unify such subprocesses into a single process, with rows separated by a new indicator in
Snowflake. This design increases the row count, and it requires natural clustering e.g., sorting the
data chronologically based on key date columns used in consumption. Here are some sample
design considerations.

1. Combining multiple region-specific extractors into a simple stored procedure.
2. Combining data store objects (DSO), transformations, etc. into a simple process.

03
Data modelling considerations
With the capabilities of tools like data build tool (DBT), the data modelling should be efficient and
reliable by leveraging the declarative, modular SQL queries and version control them. In SAP BW
or HANA to Snowflake migration, it is common design thinking to optimize the multiple layers
into a single stored procedure by loading the intermediate result set into a transient table.
However, the modularity, reusability, lineage graphs, and data quality frameworks are key aspects
that should be considered in the data modelling instead of 10,000 lines of SQL code wrapped in a
Snowflake stored procedure sequence.

17

The table below compares the modular vs monolithic ways of data modelling in the context
of Snowflake.

18

Monolithic data modelling

Data Processing
Running the entire process in one stored
procedure executes tasks sequentially, not
utilizing Snowflake’s multi-threading and
massively parallel processing (MPP) capabilities,
leading to longer completion times and
keeping the cluster active for extended periods.

Modular data modelling

Data Processing
Logically separate contexts into intermediate
CTEs to enable parallel execution across cluster
nodes, optimizing performance.

Cost
Sequential execution keeps the compute
cluster active longer, increasing costs.
Re-processing due to failures or issues requires
running the entire workflow again, resulting in
higher expenses and potential cloud wastage.

Cost
Relatively cost-effective.
During re-processing or retrofitting, not
all the workflows need to be executed
again (can be customized by selecting
the required jobs in DBT).

Data Quality
Problems in one context cascade require
reprocessing all workflows, creating a single
point of failure and complicating debugging.

Data Quality
The DQ issues can be narrowed down easily
and the required workflow along with the
upstream objects can be reprocessed.

Cross Dependency Management
Post-migration, managing interdependencies
requires creating views with the necessary
columns if granularity remains consistent.

Cross Dependency Management
Re-usability by calling dbt macros serves
the purpose along with lineage.

DataOps and maintainability
Lengthy code makes debugging and
addressing data issues complex and
time-consuming. Retrofitting data
necessitates re-running the entire flow.

DataOps and maintainability
Comprehensive coding as the SQL gets broken
into intermediate Common Table Expressions
(CTE).
Retrofitting or reprocessing can be customized by
selecting required jobs in Data Build Tool (DBT).

• Denormalized data set for consumption.

• Dimensions and fact tables in a star schema that can be joined during
consumption in Snowflake or inside PowerBI modelling.

01
One big table

02
Star schema

1. Queries are straightforward without
complex joins, making them easier
to write and understand. However,
de-normalized data can lead to
redundancy, larger storage needs,
and potential consistency issues.

2. Benefits from Snowflake’s columnar
storage and compression but
requires careful clustering for
efficient query pruning. Maintaining
a single table can be complex due to
data duplication, with variable load
times depending on the KPI context
and transaction tables involved.

1. Queries involve joins between fact
and dimension tables, which can be
more complex but efficient for large
datasets. The normalized structure
reduces redundancy and improves
data integrity, making performance
generally better for large datasets.

2. More complex to maintain with
multiple tables but ensures better
consistency and easier updates. Load
times can be faster with a normalized
design, though careful ETL processes
are needed to populate multiple
tables. Suitable for large, complex
datasets where data integrity and
performance are crucial.

When it comes to the consumption layer and end-user experience, meeting the non-functional

requirement and ease of self-service capabilities are key success measures. In the SAP BW transition

journey, it is quite common to have:

One big table vs star schema approach

19

01
Data latency

02
Leverage cache

Align materialization frequency and
schedule with raw table updates to
minimize latency. Ensure consistency by
aligning KPIs' latency and maintaining
data snapshots for reliable reporting
and analytics.

Utilize Snowflake’s cache for identical
downstream queries to improve
performance.

03
Load pattern

04
Materialization-query performance

Full load: Suitable for smaller datasets;
manage blackouts with explicit
transaction handling
(`BEGIN/COMMIT`).
Incremental load: Ideal for large
datasets with identified primary keys;
maintain cardinality and manage
duplicates with an append-only,
delete/insert, merge pattern.

Convert frequent queries to CTEs for
efficiency.
Use predicate pushdown to move filters to
inner queries.
Eliminate dead code and optimize joins.

While materialization is one of the key aspects in snowflake, it is not meant to solve performance

problems. However, it is a key design component to get the best out of Snowflake. Here are the

parameters and considerations for materialization.

Materialization strategy

20

05
Nested models

06
Cost-efficiency and user experience

Flatten complex nested views and use
CTEs to improve performance and
reduce compilation time.

Persisting data in tables enhances
performance and is cost-effective.
Precompute outputs on a schedule to
manage costs effectively, especially if
underlying data changes infrequently.

Handling currency
conversion in Snowflake
While forklifting models from SAP HANA to Snowflake, the currency conversion logics do not get

migrated. They require a new design in Snowflake that can be invoked in the join as when required.

Hence, it is important to understand the conversion approaches in SAP HANA:

• Global currency conversion models

• Region specific currency conversion models

• A global/domain specific currency conversion semantics

21

In Snowflake, it is always recommended to build a new model leveraging TCURR and its associated tables.

As conversion can happen in multiple columns in the same models, the result should be precomputed for

better execution time. The important design aspect is to add “START DATE” and “END DATE” to each row

in the conversion table to cover all the missing dates scenarios in TCURR. The conversion model can be

consumed by other models leveraging these dates for accurate conversion rates. Depending on the

landscape, the pre-computation of the conversion model in Snowflake shall potentially cover scenarios

such as:

• USD to non-USD

• Non-USD to USD

• Non-USD to non-USD

• Decimal shift

• Exception dates

• Future date conversion

The diagram below illustrates the currency conversion model in Snowflake for set operations. The same

can be a user defined function (UDF) with necessary input parameters that can be leveraged for

row-by-row operations in API calls or OLTP processes, etc.

Currency conversion model in Snowflake

!"#$%&$'()!"#$*%& +#,!+ -,#*./0'1#*&2!,%#0

!"#$%#&'()$*!#+,-

!"#$%#&'()$*!#+,-

!"#$%"

!"#$&'()

#*++(%#,

-)"*%'$.#

!"#$%#&'()$*!#+,-

!"#$%"

!"#$&'()

#*++(%#,

-)"*%'$.#

-)"*%'$*/!

!"#$$%&'!%(

)$*+%"#$$',"-

!*."#$$',"-

'))'"!/0'.)$*+

'))'"!/0.!*

'1"23,4'%!-5'

"*,0'$&/*,%)3"!*$

!"#$$%&'!%6

!*%"#$$',"-

)$*+."#$$',"-

'))'"!/0'.)$*+

'))'"!/0.!*

'1"23,4'%!-5'

(7"*,0'$&/*,%)3"!*$

0345678954:;879

High performant
during SET based

consumption

Special conversion scenarios
such as decimal shift,
USD NON-USD etc.

Conversion for future
dates/missing dates
such as weekends

Process currency
conversion
in batches

Figure 6: Currency conversion model in Snowflake for SET operations

22

Currency Conversion
Inputs in HANA

Currency conversion
using a conversion master

HANA SNOWFLAKE

Handling Decimal Shift

Figure 7: Sample before and after currency conversion scenario in migration

Level up the migration
with Snowflake features
A successful migration to Snowflake involves more than just replacing existing functionality; it should also

leverage Snowflake's advanced features to future-proof your data and analytics strategy. Utilizing

Snowflake's native features is crucial for optimal price-performance. Ignoring these features or deviating

from Snowflake standards can lead to scalability issues, poor performance, and higher costs.

23

Proper planning to incorporate Snowflake’s features can enhance the migration process and adhere to

timelines. For SAP HANA or BW analytics migrations, several specific Snowflake features can be utilized

effectively.

• Materializing complex database view data in a table

• Incremental refresh

• Automated refresh based on lag parameter

• Eliminating the need for setting up tasks/stream’s orchestrations

• Reducing pipeline build times

Dynamic tables are a key feature that simplify and automate data pipelines. They streamline the process of

transforming and managing the data transformation logic with automated refresh. This capability makes

them ideal for SAP HANA to Snowflake migration scenarios. To improve performance, it is important

persist the model data in a table–this is a key design aspect in such a SAP migration. The dynamic table

feature is a tailor-made feature to address requirements such as:

Dynamic tables for pipeline simplification

Base table 1

Dynamic Table 1

Auto
refresh 1

Source

Base table 2

Base table 3

Dynamic Table 2
Base table 4

Auto
refresh 2

Inserts

Inserts

Updates
Deletes

Figure 8: Simplifying and automating data pipelines with dynamic tables

24

Object and query tagging are essential for data governance and cost management but are often

overlooked. Tags help classify objects and logs during use case onboarding and are crucial for:

Incorporating tags from the design phase is critical; adding them later is complex and affects existing

query logs, resulting in lost cost control. Therefore, tagging should be a mandatory part of the design

checklist.

Tags for governance

The streamlit apps can be used to manage user language tables, data quality rules, and lookup flat files via

Snowflake native app. Traditionally, these mapping and lookup tables are updated manually by SQL scripts

using insert and update statements. Such manual processes can be automated and improved via a

Streamlit app framework with ease alongside migration, especially in a re-engineering approach.

Streamlit apps for data quality

• Cost slicing and dicing

• Identifying bottlenecks

• Traceability in Snowflake query history

Stage
Table DQ Rules

applied & loaded
to Target

Snowsight

Mapping table
management/ DQ
rules Management

Mapping/
Rules
Table

Snowflake
Streamlit App

(UI)

Stored
Proc

Task &
Streams

Streaming
Data

Files

Delta load
From
Batch
Process

Inbound
data/File

Figure 9: Automating processes to improve data quality using the Streamlit app during migration

25

Snowflake offers its users many AI/ML capabilities such as Cortex–a fully Managed AI/ML solution. Here

are some of the sample SAP use cases that can be solved using Cortex’s capabilities.

AI/ML for SAP use cases

Use case 1
Enterprise fraud management to evaluate the vendors, vendor duplicity, and financial
transactions to identify patterns, predict potential frauds, anomaly detection, etc.

Use case 2
Optimizing and predicting the ROP (re-order points) and MAX stock levels to manage
the inventory (avoid overstocking /understocking) in the warehouse.

Use case 3
Evaluate the non-stock transactions in EKPO that can be a potential stock material
in SAP.

Use case 4
Handling multiple language text and convert them to English to perform work cloud
analysis on STXL table texts, purchase order texts, etc.

Use case 5
Document AI in Snowflake helps evaluate the service order documents (SOW) and
highlight missing legal statement, word cloud, etc.

26

Conclusion
While SAP HANA and BW are robust enterprise data platforms, their

architecture and on-premises nature result in high costs, limited scalability,

and complex infrastructure. Migrating these workloads to Snowflake

offers benefits but requires careful planning.

Choosing the right migration strategy is key. The lift-optimize-shift

approach moves existing objects directly to Snowflake for faster

implementation, minimizing disruption but possibly duplicating

inefficiencies, affecting performance and cost. Re-engineering, on the

other hand, involves rebuilding data models to fully leverage Snowflake's

capabilities, resulting in a future-proof platform with better performance,

but with longer duration.

Migrating from SAP HANA and BW to Snowflake transforms data

infrastructure into a more agile, cost-effective, and scalable environment.

This transition reduces operational overhead and empowers organizations

with advanced capabilities and features to drive innovation and stay

competitive in a data-driven landscape.

27

28

https://www.snowflake.com/resource/migrating-from-sap-to-snowflake/

Definitive Guide to Managing Spend in Snowflake , Technical Guide, Snowflake, 2023

Simplifying Your Analytics Landscape by Migrating from SAP to Snowflake , Technical Guide, Snowflake, 2021

https://medium.com/snowflake/snowflake-dynamic-table-complete-guide-1-7b27925e099d

Snowflake Dynamic Table Complete Guide , Alexander, Snowflake Medium

ii

i

iii

https://www.snowflake.com/wp-content/uploads/2023/10/Definitive-Guide-to-Managing-Spend-in-

Snowflake.pdf

https://www.snowflake.com/blog/use-ai-snowflake-cortex/

Use AI in Seconds with Snowflake Cortex, Pieter Verhoeven, Snowflake, 2023iv

References

https://www.snowflake.com/resource/migrating-from-sap-to-snowflake/
https://www.snowflake.com/wp-content/uploads/2023/10/Definitive-Guide-to-Managing-Spend-in-Snowflake.pdf
https://medium.com/snowflake/snowflake-dynamic-table-complete-guide-1-7b27925e099d
https://www.snowflake.com/blog/use-ai-snowflake-cortex/

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business models,

accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than 700 clients,

LTIMindtree brings extensive domain and technology expertise to help drive superior competitive differentiation, customer experiences, and business

outcomes in a converging world. Powered by 81,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree —

a Larsen & Toubro Group company — solves the most complex business challenges and delivers transformation at scale. For more information, please

visit https://www.ltimindtree.com/

About the Author

Muthusivan has 17 years of experience in data practice in solutioning and technology

consulting for customers across the globe. He is a specialist consultant in devising

cost-performance optimization strategies and performing gap analysis in Snowflake.

He is passionate about Snowflake, solving complex migration problems in large

transformational programs, and solving business problems through data, AI and apps.

Muthusivan Vellapandian
Solution architect–Snowflake tech-consulting,
LTIMindtree

