
Python-Stored Procedures
Making developers limitless
in their approach

Point of View

by Srinivasaraghavan Sundar

02

Why Python Stored
Procedure?
Ever since its inception, SQL-based

paradigms have been hampered by their

inability to solve procedural logic

problems. Even though PL SQL was

widely used, it was often clunky when

compared to more modern procedural

coding languages. Snowflake solved this

problem by introducing Stored

Procedures which enabled you to write

procedural code that executes SQL. Since

you would write this code in Javascript,

you could implement branching, looping,

and variable assignments far more

effortlessly than on SQL. While this

innovation proved to elevate the

customer experience, Snowflake did not

stop there. Instead, they improved the

selection of languages available to write

Stored Procedures. Today, we can write

Stored Procedures in Javascript, Scala,

Java, SQL, and Python.

With Python Stored Procedures,

Snowflake enables the user to write

Procedural Logic in what is undoubtedly

the most popular coding language in the

world. Moreover, it facilitates solving

complex data engineering problems right

where the data resides. All this while also

taking advantage of the famed scalable

compute provided by Snowflake.

With access to hundreds of open-source

libraries, deployment of data science models

can be done on Snowflake with ease!

Python SP vs.
Python UDF
Now, for those of you who have followed

our previous post regarding Python UDFs,

you may be wondering what is the

difference between Python UDF and Python

Stored Procedure.

Well, both allow you to write and execute

Python on Snowflake. Stored Procedures, in

addition, can execute SQL queries. And

therein lies the crucial difference. Python

Stored Procedures make use of the

Snowpark library in order to execute SQL

queries. This provides an added benefit of

being able to execute SQL either using the

Dataframe API or the usual SQL queries.

“Well, why can’t I just run the code on my local

machine using Snowpark?” I hear you say.

That certainly is an option, and while it

depends on the use case, by using Python

Stored Procedure, 100% of your code is being

run on Snowflake by the Virtual Warehouse.

In contrast to this, when you use Snowpark,

all the code w hich makes use of the

Snowpark APIs run on Snowflake, and other

operations run on your local machine. There

may be instances where you require

Snowflake to do all the heavy lifting when it

comes to the compute. Moreover, if you

want to schedule a procedure to run by

making use of tasks, you would not be able

to do so on Snowpark.

Now then, let us jump into a demo to see

what Python Stored Procedure can do.

Problem description

The dataset we are making use of today can be found here:

https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset

Given a number of features and parameters regarding a patient’s heart condition, our

objective is to predict if they have a heart disease. In order to do so, we are making use of

Logistic Regression. For a given table containing the necessary parameters, a new table

“RESULTS” is constructed comprising all the predicted values.

Dataflow of the Solution

Our goal is to train once and deploy multiple times. This means that there must be an isolation

between training and prediction modules. Therefore, we build two Stored Procedures—One

to train and store the model and another to load the saved model and perform

predictions. Once the predictions are obtained they are written into a new table.

As and when a data drift/model drift occurs, the model can be retrained.

x0

w0

w1

w2

wm

x1

x2

xm

Error

Net Input
Function

Net Input
Function

Output

Activation (Logistic)
Function

∑

Fig 1: Logistic Regression

03

Classification using Python Stored Procedure
CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_train'

AS

$$

import pickle

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#Creating handler function

def heart_disease_train(session, TABLE_NAME):

table_name=TABLE_NAME

#defining snowflake dataframe

 df=session.table(table_name)

#converting snowflake dataframe to pandas dataframe

 dataset=df.to_pandas()

 s_sc = StandardScaler()

#selecting columns to scale

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

As we can see, there are 12 different features for us to work with in order to obtain
a prediction. None of these features are categorical, therefore one hot encoding is not needed.

However, not all these features are useful for us to make a prediction. Moreover, some scaling

must be done across the table.

Fig 2: Python SP Dataflow

Fig 3: Sample data

Heart Table
Logistic Regression

Train SP
Saved Model

Prediction SP

3. Get model
weights4. Store

predictions

3. Get data
to predict on

Test Table

Data Flow

1. Get data
to train
model

2. Store
trained
model

Dataset Description

04

CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_train'

AS

$$

import pickle

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#Creating handler function

def heart_disease_train(session, TABLE_NAME):

table_name=TABLE_NAME

#defining snowflake dataframe

 df=session.table(table_name)

#converting snowflake dataframe to pandas dataframe

 dataset=df.to_pandas()

 s_sc = StandardScaler()

#selecting columns to scale

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_train'

AS

$$

import pickle

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#Creating handler function

def heart_disease_train(session, TABLE_NAME):

table_name=TABLE_NAME

#defining snowflake dataframe

 df=session.table(table_name)

#converting snowflake dataframe to pandas dataframe

 dataset=df.to_pandas()

 s_sc = StandardScaler()

#selecting columns to scale

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_train'

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#Creating handler function

def heart_disease_train(session, TABLE_NAME):

table_name=TABLE_NAME

#defining snowflake dataframe

 df=session.table(table_name)

#converting snowflake dataframe to pandas dataframe

 dataset=df.to_pandas()

 s_sc = StandardScaler()

#selecting columns to scale

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_train'

AS

$$

import pickle

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#Creating handler function

def heart_disease_train(session, TABLE_NAME):

 table_name=TABLE_NAME

#defining snowflake dataframe

 df=session.table(table_name)

#converting snowflake dataframe to pandas dataframe

 dataset=df.to_pandas()

 s_sc = StandardScaler()

#selecting columns to scale

 col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

Training the model

05

CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_train'

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from snowflake.snowpark.functions import *

#Creating handler function

def heart_disease_train(session, TABLE_NAME):

table_name=TABLE_NAME

#defining snowflake dataframe

 df=session.table(table_name)

#converting snowflake dataframe to pandas dataframe

 dataset=df.to_pandas()

 s_sc = StandardScaler()

#selecting columns to scale

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

CREATE OR REPLACE PROCEDURE HEART_DISEASE_TRAINER(TABLE_NAME STRING)

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

#converting snowflake dataframe to pandas dataframe

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

 X = dataset.drop('TARGET', axis=1)

y = dataset.TARGET

#obtaining train-test split

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#using logistic regression and declaring parameters

lr_clf = LogisticRegression(penalty='elasticnet', dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,

solver='saga', max_iter=1000, multi_class='auto', verbose=0, warm_start=False, n_jobs=None,

l1_ratio=0.3)

#fitting the logistic regression model

 lr_clf.fit(X_train, y_train)

test_score = str(accuracy_score(y_test, lr_clf.predict(X_test)) * 100)+'%'

#converting the trained model into serialized binary string using pickle

 serialized_model=pickle.dumps(lr_clf)

#storing the binary string containing the trained model along with test score in a snowflake

dataframe df_model=session.create_dataframe([[serialized_model,test_score]],schema=

["model_serialized","test_score"])

#writing snowflake dataframe into a new table.

 df_model.write.mode("overwrite").save_as_table("MODELS")

return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_TRAINER('HEART');

The above procedure trains the logistic regression model and stores it in a table in the form of

a binary string. The stored model is called using the following procedure which performs

prediction on a given table.

Perform Predictions

CREATE OR REPLACE PROCEDURE HEART_DISEASE_PRED(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

 X = dataset.drop('TARGET', axis=1)

y = dataset.TARGET

#obtaining train-test split

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#using logistic regression and declaring parameters

lr_clf = LogisticRegression(penalty='elasticnet', dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,

solver='saga', max_iter=1000, multi_class='auto', verbose=0, warm_start=False, n_jobs=None,

l1_ratio=0.3)

#fitting the logistic regression model

 lr_clf.fit(X_train, y_train)

test_score = str(accuracy_score(y_test, lr_clf.predict(X_test)) * 100)+'%'

#converting the trained model into serialized binary string using pickle

 serialized_model=pickle.dumps(lr_clf)

#storing the binary string containing the trained model along with test score in a snowflake

dataframe df_model=session.create_dataframe([[serialized_model,test_score]],schema=

["model_serialized","test_score"])

#writing snowflake dataframe into a new table.

 df_model.write.mode("overwrite").save_as_table("MODELS")

return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_TRAINER('HEART');

The above procedure trains the logistic regression model and stores it in a table in the form of

a binary string. The stored model is called using the following procedure which performs

prediction on a given table.

Perform Predictions

CREATE OR REPLACE PROCEDURE HEART_DISEASE_PRED(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

 X = dataset.drop('TARGET', axis=1)

 y = dataset.TARGET

#obtaining train-test split

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#using logistic regression and declaring parameters

 lr_clf = LogisticRegression(penalty='elasticnet', dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,

solver='saga', max_iter=1000, multi_class='auto', verbose=0, warm_start=False, n_jobs=None,

l1_ratio=0.3)

#fitting the logistic regression model

 lr_clf.fit(X_train, y_train)

 test_score = str(accuracy_score(y_test, lr_clf.predict(X_test)) * 100)+'%'

#converting the trained model into serialized binary string using pickle

 serialized_model=pickle.dumps(lr_clf)

#storing the binary string containing the trained model along with test score in a snowflake

dataframe df_model=session.create_dataframe([[serialized_model,test_score]],schema=

["model_serialized","test_score"])

#writing snowflake dataframe into a new table.

 df_model.write.mode("overwrite").save_as_table("MODELS")

 return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_TRAINER('HEART');

The above procedure trains the logistic regression model and stores it in a table in the form of

a binary string. The stored model is called using the following procedure which performs

prediction on a given table.

Perform Predictions

CREATE OR REPLACE PROCEDURE HEART_DISEASE_PRED(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

06

 X = dataset.drop('TARGET', axis=1)

 y = dataset.TARGET

#obtaining train-test split

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#using logistic regression and declaring parameters

lr_clf = LogisticRegression(penalty='elasticnet', dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,

solver='saga', max_iter=1000, multi_class='auto', verbose=0, warm_start=False, n_jobs=None,

l1_ratio=0.3)

#fitting the logistic regression model

 lr_clf.fit(X_train, y_train)

test_score = str(accuracy_score(y_test, lr_clf.predict(X_test)) * 100)+'%'

#converting the trained model into serialized binary string using pickle

 serialized_model=pickle.dumps(lr_clf)

#storing the binary string containing the trained model along with test score in a snowflake

dataframe df_model=session.create_dataframe([[serialized_model,test_score]],schema=

["model_serialized","test_score"])

#writing snowflake dataframe into a new table.

 df_model.write.mode("overwrite").save_as_table("MODELS")

return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_TRAINER('HEART');

The above procedure trains the logistic regression model and stores it in a table in the form of

a binary string. The stored model is called using the following procedure which performs

prediction on a given table.

Perform Predictions

CREATE OR REPLACE PROCEDURE HEART_DISEASE_PRED(TABLE_NAME STRING)

RETURNS string

LANGUAGE PYTHON

RUNTIME_VERSION = '3.8'

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_predict'

AS

$$

import numpy as np

import pickle

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#create handler function to perform prediction

def heart_disease_predict(session, TABLE_NAME):

#read the stored model from the table and convert it to a pandas dataframe

 df=session.table("MODELS")

 dfm=df.to_pandas()

#load binary string into a model using pickle

 model=dfm["model_serialized"].iloc[0]

 s_sc = StandardScaler()

 lr_clf=pickle.loads(model)

 df2=session.table(TABLE_NAME)

#read data that is to be predicted on

 data_test=df2.to_pandas()

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 data_test[col_to_scale] = s_sc.fit_transform(data_test[col_to_scale])

 X_pred=data_test

#predict using model

 prediction=lr_clf.predict(X_pred)

 data_test["PREDICTION"]=prediction

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

lr_clf = LogisticRegression(penalty='elasticnet', dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,

solver='saga', max_iter=1000, multi_class='auto', verbose=0, warm_start=False, n_jobs=None,

test_score = str(accuracy_score(y_test, lr_clf.predict(X_test)) * 100)+'%'

#storing the binary string containing the trained model along with test score in a snowflake

df_model=session.create_dataframe([[serialized_model,test_score]],schema=

The above procedure trains the logistic regression model and stores it in a table in the form of

a binary string. The stored model is called using the following procedure which performs

CREATE OR REPLACE PROCEDURE HEART_DISEASE_PRED(TABLE_NAME STRING)

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_predict'

AS

$$

import numpy as np

import pickle

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#create handler function to perform prediction

def heart_disease_predict(session, TABLE_NAME):

#read the stored model from the table and convert it to a pandas dataframe

 df=session.table("MODELS")

 dfm=df.to_pandas()

#load binary string into a model using pickle

 model=dfm["model_serialized"].iloc[0]

 s_sc = StandardScaler()

 lr_clf=pickle.loads(model)

 df2=session.table(TABLE_NAME)

#read data that is to be predicted on

 data_test=df2.to_pandas()

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 data_test[col_to_scale] = s_sc.fit_transform(data_test[col_to_scale])

 X_pred=data_test

#predict using model

 prediction=lr_clf.predict(X_pred)

 data_test["PREDICTION"]=prediction

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_predict'

AS

$$

import numpy as np

import pickle

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#create handler function to perform prediction

def heart_disease_predict(session, TABLE_NAME):

#read the stored model from the table and convert it to a pandas dataframe

 df=session.table("MODELS")

 dfm=df.to_pandas()

#load binary string into a model using pickle

 model=dfm["model_serialized"].iloc[0]

 s_sc = StandardScaler()

 lr_clf=pickle.loads(model)

 df2=session.table(TABLE_NAME)

#read data that is to be predicted on

 data_test=df2.to_pandas()

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 data_test[col_to_scale] = s_sc.fit_transform(data_test[col_to_scale])

 X_pred=data_test

#predict using model

 prediction=lr_clf.predict(X_pred)

 data_test["PREDICTION"]=prediction

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

HANDLER = 'heart_disease_predict'

AS

$$

import numpy as np

import pickle

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import pandas as pd

from snowflake.snowpark.functions import *

#create handler function to perform prediction

def heart_disease_predict(session, TABLE_NAME):

#read the stored model from the table and convert it to a pandas dataframe

 df=session.table("MODELS")

 dfm=df.to_pandas()

#load binary string into a model using pickle

 model=dfm["model_serialized"].iloc[0]

 s_sc = StandardScaler()

 lr_clf=pickle.loads(model)

 df2=session.table(TABLE_NAME)

#read data that is to be predicted on

 data_test=df2.to_pandas()

 col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 data_test[col_to_scale] = s_sc.fit_transform(data_test[col_to_scale])

 X_pred=data_test

#predict using model

 prediction=lr_clf.predict(X_pred)

 data_test["PREDICTION"]=prediction

07

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

PACKAGES = ('snowflake-snowpark-python','pandas==1.2.3','numpy==1.19.2','scikit-learn')

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from snowflake.snowpark.functions import *

#create handler function to perform prediction

def heart_disease_predict(session, TABLE_NAME):

#read the stored model from the table and convert it to a pandas dataframe

#load binary string into a model using pickle

col_to_scale = ['AGE', 'TRESTBPS', 'CHOL', 'THALACH', 'OLDPEAK']

 data_test[col_to_scale] = s_sc.fit_transform(data_test[col_to_scale])

 data_test[col_to_scale] = s_sc.inverse_transform(data_test[col_to_scale])

#in order to be more human readable, we convert numerical 1 to “MALE” and 0 to “FEMALE”

 data_test.loc[data_test["SEX"] == 1, "SEX"] = "MALE"

 data_test.loc[data_test["SEX"] == 0, "SEX"] = "FEMALE"

#write results into a new table.

 session.write_pandas(data_test, "RESULTS",auto_create_table=True)

return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_PRED('HEART_TEST');

 data_test[col_to_scale] = s_sc.inverse_transform(data_test[col_to_scale])

#in order to be more human readable, we convert numerical 1 to “MALE” and 0 to “FEMALE”

 data_test.loc[data_test["SEX"] == 1, "SEX"] = "MALE"

 data_test.loc[data_test["SEX"] == 0, "SEX"] = "FEMALE"

#write results into a new table.

 session.write_pandas(data_test, "RESULTS",auto_create_table=True)

 return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_PRED('HEART_TEST');

Upon running the above command, we identify people with a potential heart disease. And

thanks to Snowflake Python Stored Procedure, they can be notified quickly!

In Conclusion
Hopefully, this tutorial has helped you to get a grip on what can be done using Python Stored

Procedures. It is quite remarkable that we can perform these complex machine learning

algorithms right where the data resides.

Snowflake does not seem to stop with just the extra mile. They push further to enable developers

to become limitless. Today, you can write Stored Procedures in any one of five different

languages based on your preference. Mine just happens to be Python, what about you?

08

 data_test[col_to_scale] = s_sc.inverse_transform(data_test[col_to_scale])

#in order to be more human readable, we convert numerical 1 to “MALE” and 0 to “FEMALE”

 data_test.loc[data_test["SEX"] == 1, "SEX"] = "MALE"

 data_test.loc[data_test["SEX"] == 0, "SEX"] = "FEMALE"

#write results into a new table.

 session.write_pandas(data_test, "RESULTS",auto_create_table=True)

return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_PRED('HEART_TEST');

 data_test[col_to_scale] = s_sc.inverse_transform(data_test[col_to_scale])

#in order to be more human readable, we convert numerical 1 to “MALE” and 0 to “FEMALE”

 data_test.loc[data_test["SEX"] == 1, "SEX"] = "MALE"

 data_test.loc[data_test["SEX"] == 0, "SEX"] = "FEMALE"

#write results into a new table.

 session.write_pandas(data_test, "RESULTS",auto_create_table=True)

return "success"

$$;

The procedure can be called by the following query:

call HEART_DISEASE_PRED('HEART_TEST');

 data_test[col_to_scale] = s_sc.inverse_transform(data_test[col_to_scale])

#in order to be more human readable, we convert numerical 1 to “MALE” and 0 to “FEMALE”

 data_test.loc[data_test["SEX"] == 1, "SEX"] = "MALE"

 data_test.loc[data_test["SEX"] == 0, "SEX"] = "FEMALE"

#write results into a new table.

 session.write_pandas(data_test, "RESULTS",auto_create_table=True)

return "success"

The procedure can be called by the following query:

call HEART_DISEASE_PRED('HEART_TEST');

About the Author

Srinivasaraghavan Sundar
Senior Data Engineer, Snowflake Center of Excellence, LTIMindtree

Srinivas is currently a part of LTIMindtree's Snowflake COE in the capacity of a Senior Data

Engineer with a natural penchant for Data Science. Srinivas usually spends his time either

picking up new skills or honing and deep diving into his areas of interest in Data Engineering

& Data science. He channels his creativity into finding unique solutions for technical problems

and writing content to help our readers.

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine

business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to

more than 700 clients, LTIMindtree brings extensive domain and technology expertise to help drive superior competitive differentiation,

customer experiences, and business outcomes in a converging world. Powered by 81,000+ talented and entrepreneurial professionals

across more than 30 countries, LTIMindtree — a Larsen & Toubro Group company — combines the industry-acclaimed strengths of

erstwhile Larsen and Toubro Infotech and Mindtree in solving the most complex business challenges and delivering transformation at scale.

For more information, please visit www.ltimindtree.com.

