
6 Factors to Consider before
Adop�ng Microser�ces Architecture

Point of View

Microservices is the most sought-after

architecture today. Not only are

Microservices Architects insistent crazy

about changing every other system

architecture to Microservices

architectures, but even business

stakeholders seem to be sold on the

advantages they can reap by switching

to the Microservices architecture.

Software architecture is regarded as

ideal if it solves the intended problem

and is flexible and scalable. Paul

Clements, author of Software

Architecture in Practice has said,

But, Microservices has, in fact, gone a

step ahead and brought the element of

speed and safety to the change in the

architecture.. Considerably, the major

theme around the Microservices

architecture is the ease of change with

speed and safety. Now, while the

benefits of Microservices architecture

are undeniable, it comes with its own

set of challenges and requirements. And

switching to any new architecture will

incur cost and effort and so we need to

really consider whether we have the

right use case for a Microservices

Architecture before we decide to adopt

it. Below are a few points that can help

in this consideration.

Your existing architecture already provides benefits
of Microservices

Less adhesion and more cohesion are the two major characteristics of well-written

code and Microservices adhere to these two characteristics at their core.

Microservices are independent modules loosely coupled with each other and each

module performs a particular task. Separation of concern is one of the first few rules

taught in programming classes for writing better code.

Concept of “Separation of Concern” in software engineering enables the different

teams to focus on different areas of the application and work on them independently.

This eases the code maintenance and minimizes the impact of change on other

modules. Microservices architecture exploits the concept of Separation of Concerns

and extends it to the independent deployment This gives the luxury to development

team to manage the different services independently and ease of testing and scaling.

However, if we have achieved a higher level of cohesion and low adhesion in different

modules, then we might need to explore the other benefits of Microservice

architecture before adopting it.

02

6 Factors to Consider before Adop�ng
Microser�ces Architecture

1

The best software
architecture knows
what changes often
and makes that easy

03

Suitable for large applications

Microservices architecture is ideal for large applications. In the case of large monolith

applications, code deployment effort is significant even for a small code change

which can be one of the valid reasons for adopting the Microservice architecture.

When the scope and boundaries of a monolith application tend to grow with time,

we should consider the Microservice approach.

In today’s fast-paced and continuously changing world of technology, a computer

software is nothing but the reflection of business problems, and providing the

feasible solution to address them. However, if our monolith application with its

erstwhile architecture is already capable of incorporating the changes with ease and

deploying the application does not take significant time and effort, then moving to a

Microservices architecture for the sake of it, does not add value.

2

Reusability or Replaceability (SOA or Microservices)

Programmers around the world have always been taught about the concept of

reusability. Probably, reusability can be regarded as one of the most important

aspects of the good and efficient program. Service Oriented Architecture (SOA) is a

design approach, where several individual services collaborate to provide some set of

functionalities and emphasis is given to the reusability. SOA provides a service that

can be used by one or more applications to cater to a functionality and at its core, SOA

is a simple well-written logic that can be reused by more than one application or

module. However, Microservices focus on the ease of replaceability. where they are

used by only one module or application. They are goal-oriented, and just a separate

piece of software that may not make a business case and may not provide any value

if considered as a standalone service. So, we need to have a clear understanding of

the requirement whether we need a reusable piece of code (in which case an SOA

should be the preferred architecture), or we want our application to be modularized

to a level, where standalone deployment and scalability saves cost and effort with

Microservices.

3

6 Factors to Consider before Adop�ng
Microser�ces Architecture

04

Orchestrate multiple services in harmony

A musical orchestra playing a particular tune in symphony can be taken as a perfect

analogy to understand the concept of microservices. In musical orchestra, multiple

artists play a series of chords with their different instruments in perfect harmony to

produce a sweet musical tune. Similarly, in microservices architecture, multiple

services collaborate to perform a particular task. Each service is a separate entity and

can be deployed and scaled separately, but it must be part of the orchestra to provide

the desired business value. This need for the perfect harmonization to run the

orchestra brings its own challenges and complexity. All the Microservices which are

part of the Microservices architecture-based system need to be maintained

separately, with different teams working on the different services without

communication barriers or distinction in understanding of the business value the

application needs to deliver. Therefore, the ease of communication, well-defined

logical boundaries, and scope of a particular Microservice are the key ingredients to

achieve the cohesiveness and efficiency in the landscape of Microservice

architecture. Linguistic barrier - geographically distributed but disconnected teams

working in different time zones and the difference in understanding of the business

value to be delivered - can be the major impediments to develop an application using

Microservices architecture. It is suggested that people working on one service should

be co-located.

4

Team with right skill set

One of the main characteristics of this architecture is that the Microservices are

developed and deployed independently. Deploying a monolith is a straightforward

process but deploying a Microservice is a different task altogether due to the

interdependence. If the deployment strategy is not correct, then having a

Microservice architecture can be a big pain. Most-suited development and

deployment strategy for the Microservice architecture is Continuous Development

and Continuous Integration. This deployment feature calls the need for adoption of

the mantra “You built it, you run it” given by Amazon. This strategy ensures that a

piece of code written by a developer not only works independently in his module but

also integrates well with the other required modules and serves the desired purpose.

This approach reduces the effort in fixing the integration issues during the release

process and saves significant amount of rework. It absolutely makes sense that to

5

6 Factors to Consider before Adop�ng
Microser�ces Architecture

adhere to “You built it, you run it” mantra developer should have basic skills of

deploying the code along with his primary programming skills. Having a

development team with no exposure to the deployment strategies can be a

bottleneck because it will present an impediment in the process of continuous

integration. So, it is necessary for the development teams to have some level of

exposure in deployment strategies along with the regular development skills.

The core idea behind the Microservices architecture is to respond the change in faster

and safer way and hence, the Microservices architecture is suitable for the

applications addressing rapidly changing business requirements. Agile

methodologies are the most-suited software development methodologies for the

development of applications which address continuous changing business

requirements. In such agile development teams, the development and testing of the

application goes hand in hand, and this requires the developer to be equipped with

a certain level of testing skills and a relatively higher level of functional knowledge of

the application.

Having separate development, testing, and deployment teams for each Microservice

is a relatively costly affair and create unwanted dependency within the team. So,

having a cross-functional team and full stack team members is the right preparation

for adopting the Microservice architecture for efficient and cost-effective

development.

Team with right skill set

One of the main characteristics of this architecture is that the Microservices are

developed and deployed independently. Deploying a monolith is a straightforward

process but deploying a Microservice is a different task altogether due to the

interdependence. If the deployment strategy is not correct, then having a

Microservice architecture can be a big pain. Most-suited development and

deployment strategy for the Microservice architecture is Continuous Development

and Continuous Integration. This deployment feature calls the need for adoption of

the mantra “You built it, you run it” given by Amazon. This strategy ensures that a

piece of code written by a developer not only works independently in his module but

also integrates well with the other required modules and serves the desired purpose.

This approach reduces the effort in fixing the integration issues during the release

process and saves significant amount of rework. It absolutely makes sense that to

6 Factors to Consider before Adop�ng
Microser�ces Architecture

adhere to “You built it, you run it” mantra developer should have basic skills of

deploying the code along with his primary programming skills. Having a

development team with no exposure to the deployment strategies can be a

bottleneck because it will present an impediment in the process of continuous

integration. So, it is necessary for the development teams to have some level of

exposure in deployment strategies along with the regular development skills.

The core idea behind the Microservices architecture is to respond the change in faster

and safer way and hence, the Microservices architecture is suitable for the

applications addressing rapidly changing business requirements. Agile

methodologies are the most-suited software development methodologies for the

development of applications which address continuous changing business

requirements. In such agile development teams, the development and testing of the

application goes hand in hand, and this requires the developer to be equipped with

a certain level of testing skills and a relatively higher level of functional knowledge of

the application.

Having separate development, testing, and deployment teams for each Microservice

is a relatively costly affair and create unwanted dependency within the team. So,

having a cross-functional team and full stack team members is the right preparation

for adopting the Microservice architecture for efficient and cost-effective

development.

Team willingness

Microservices architecture requires a paradigm shift in the behavioral aspect too.

Agile mindset and better communication within the team are the catalysts for the

smooth development of the application employing Microservice architecture.

Management and business stakeholders too need to be prepared to facilitate the

ease of communication within and between the teams and willingness to remove all

the possible communication barriers for the smooth functioning of the teams. Open

culture, lesser hierarchies and closely connected business and development teams

act as the perfect catalyst for the efficient development process.

6

05

LTI (NSE: LTI) is a global technology consulting and digital solutions Company helping more than 485 clients succeed in

a converging world. With operations in 33 countries, we go the extra mile for our clients and accelerate their digital

transformation journeys. Founded in 1997 as a subsidiary of Larsen & Toubro Limited, our unique heritage gives us

unrivalled real-world expertise to solve the most complex challenges of enterprises across all industries. Each day, our

team of more than 45,000 LTItes enable our clients to improve the effectiveness of their business and technology

operations and deliver value to their customers, employees and shareholders. Find more at

http://www.Lntinfotech.com or follow us at @LTI_Global.

info@Lntinfotech.com

6 Factors to Consider before Adop�ng
Microser�ces Architecture

Before embracing the Microservices architecture, these six factors need to be considered

while carefully weighing the pros and cons in the context with one’s existing system

architecture to analyze whether or not the Microservices architecture can resolve their

problems. Microservices offer loads of benefits which are but subjective to the characteristics

of the IT landscapes. Hence, adopting Microservice architecture should be a far-sighted and

well-thought decision. Microservices architecture is not a one-stop solution for all the

problems, but it can offer innumerable benefits if implemented correctly.

Nilesh is Project Manager for AI/ML platform Deployment & Support. He has 15 years of

experience with expertise in Java/J2EE, Service Oriented Architecture (SOA) and Microservice

Architecture solutions. He is an agile practitioner with experience on methodologies such as

Scrum, Kanban, Extreme Programming (XP) using Test Driven Development (TDD), pair

programming practices and SAFe framework. He is a Certified Scrum Master.

Conclusion

Nilesh Dubey
Senior Specialist - Consulting, LTI

About the Author

