
Build Enterp�se-Grade
Microser�ces using Design Pa�erns

Rahul Kulkarni

POV

Author

Build Enterprise-Grade
Microservices using Design Patterns

Introduction To Microservices Patterns ...3

How To Build Enterprise Grade Microservices Using Design Patterns4

Microservice Architecture Aspects ...5

Design Patterns ..6

Aggregator Pattern ..6

Api Gateway Design Pattern ..7

Chained Or Chain Of Responsibility Pattern ...8

Database Or Shared Data Pattern ...9

Command Query Responsibility Segregator Design Pattern10

Circuit Breaker Pattern ...11

Decomposition Pattern ...12

Strangler Pattern Or Vine Pattern ..13

References ..14

Summary ...15

Conclusion ..16

Contents

In today’s world, Microservices have become a widely

adopted pattern for building enterprise-grade applications.

Various non-functional challenges can be addressed using

the microservice- based architecture and developers can

explore common patterns in the designs and create

reusable solutions to improve the performance of the

application. This whitepaper discusses specific design

patterns that can be implemented for business

requirements to help provide best configuration and

performance outcomes, resulting in successful microservice

implementation. The design patterns discussed here will

help technical architects understand various designs used

for Microservice implementation.

The current whitepaper contains how we address the

microservices design using design patterns to address

some common scenarios we encounter in the

microservice implementation.

03

Introduc�on to
Microser�ces Pa�erns

Build Enterprise-Grade
Microservices using Design Patterns

04

Loose Coupling High Cohesion

Single Purpose

Distributed
Monolithic

Fragile
system

Microservice

Multiple
Monoliths

How to build enterp�se-grade microser�ces
using design pa�erns

All the design patterns for microservice

architecture are built on these three

principles.

As you see in this diagram, Microservice is

built on these three principles – Loose

coupling, high cohesion and single purpose.

Without high cohesion,
we will end up with a
“distributed monolithic”
where each feature
requires changing and
shipping multiple loosely
coupled services
together

Without loose
coupling, changes to

one service impact
other services, so we
cannot ship changes

fast and safely

Without “Single Purpose” we are building and maintaining multiple monolithic services,
so we will not get the full benefit of microservices

Build Enterprise-Grade
Microservices using Design Patterns

05

Microser�ce architecture aspects

Some of the important aspects apart from the three principles used in Microservice design are:

These aspects are a foundation of any stable microservice architecture and need to be considered

while designing microservice-based design. All these principles speak of the independent and

isolated behavior of microservice needed very much for its implementation.

Independent and
autonomous services

Availability

Seamless
API integration and
continuous monitoring

Isolation from failuresAuto-provisioning

Continuous delivery
through DevOps

integration

Real-time
load balancing

Resilient servicesDecentralization

Scalability

Build Enterprise-Grade
Microservices using Design Patterns

06

Design pa�erns

Some of the common design patterns used in Microservice based architecture are -

Aggregator pattern

Aggregator pattern is a pattern of microservice implementation, where multiple services are

invoked to achieve the desired functionality by the same UI page. This pattern is typically useful

when we need output by combining data from various microservices. The following diagram

displays Aggregator pattern in the microservice design.

As seen in the above diagram, an aggregator is a combination of multiple microservices for a

composite functionality. It could be a combined service of some business logic API, or it could even

be a UI, which needs functionality from three microservices. As the aggregator microservice is

based on DRY principle, we can abstract logic in composite microservices and aggregate that logic

in a single microservice.

Real world example: Please consider an E-Commerce application, where a customer clicks buy

button for purchase of an item. The item exists in his shopping cart. Here the purchase service uses

the aggregator pattern to invoke product, purchase, cart, logistics microservices at one go. This

means that using aggregator pattern, multiple microservices are called for performing the

purchase action.

Service - B

Service - C

Service - A A

B

C

A
g

g
re

g
at

o
r

API GatewayUser Interface

Users

Build Enterprise-Grade
Microservices using Design Patterns

07

API gateway design pattern

Microservices are built of concepts of domain-driven design. This means that every microservice is

a functionally independent service, which contains a complete functionality. But what happens

when an application is further broken down in small autonomous services? Some of the common

problems faced are:

The common answer to all these questions is API gateway design pattern. This microservice design

pattern can also be considered as the proxy service to route a request to the concerned microservice.

Being a variation of the Aggregator service, it can send the request to multiple services and similarly

aggregate the results back to the composite or the consumer service. API Gateway also acts as the

entry point for all the microservices and creates fine-grained APIs for different types of clients.

How is the information requested
from multiple microservices?

How is UI-based data
management achieved?

How is data transformation
achieved for various use cases?

How are multiple protocol
requests addressed?

API Gateway

Microservice - B

Microservice - C

Microservice - A A

B

C

Consumers

Build Enterprise-Grade
Microservices using Design Patterns

08

Chained or chain of responsibility pattern

Let’s say we have multiple services with dependency on each other. We have service A, B and C.

Assuming there is a chain of calls i.e. client calls service A which calls service B and so on. This

means that these services are lined up in chain. These services communicate synchronously. This

pattern is called chain of responsibility pattern, see the diagram below.

Real world example: The best example of this pattern would be a product purchase options in the

Ecommerce Application. The customer selects a product, adds it to the cart and creates an order.

Here the responsibility pattern is used where the product, shopping cart and order microservices

communicate with each other and complete the purchasing responsibility.

The diagram displays the API gateway design pattern. Microservices use service discovery, which

acts as a guide to find the route of communication between each of them. Microservices then

communicate with each other via a stateless server i.e. either by HTTP Request/Message Bus.

Real world example: Let’s consider a scenario where an E-Commerce application is accessed

from multiple devices using browser, as well as native app for viewing products. In such case, an

API Gateway pattern can cater to multiple devices and provide the same set i.e. same functional

features to these devices irrespective of their form.

A B C

Microservice - B Microservice - CMicroservice - A

Build Enterprise-Grade
Microservices using Design Patterns

09

Database or shared data pattern

Microservices are designed using domain-driven design. This means that each microservice has its

independent data management, making the functionality completely independent. For every

application, there is humongous amount of data present. So, when we break down an application

from its monolithic architecture to microservices, it is very important to note that each microservice

has enough data to process a request. So, either the system can have a database per each service,

or it can have shared database per service.

Various problems which may affect the decision of the patterns are as follows:

Real world example: Sometimes, some business processes require data that is owned by multiple

services. For e.g. View credit limit will query the customer service and orders will query the open

orders. In this case, the queries must be joined to query multiple data and Shared DB pattern will

be more helpful in this case. Sometimes the database structure i.e. schema needs to be frequently

updated. If we have database per service, then we do not have to update entire database, rather

we update only the database of that service. Some examples of database per service are Products

Microservice, etc.

Few business transactions
can query the data, with
multiple services

De-normalization
of
data

Different services have
different kinds of storage
requirements

Duplication
of data and
inconsistency

C
DB

Microservice - B Microservice - C Microservice - DMicroservice - A

D
DB

Shared
DB

Build Enterprise-Grade
Microservices using Design Patterns

10

Command Query Responsibility Segregator (CQRS) design pattern

We have seen two patterns in the data patterns design pattern i.e. shared database for multiple

microservices or independent database per microservice. Digging deeper in the independent

database per service pattern, if we want to trigger a complex query, which spans multiple service

databases, it’s not possible as the data access is only limited to one single database. In such a

scenario, CQRS design pattern can be used effectively. In this pattern, the application will be

divided in two parts, command and query. The command part will handle all the requests related

to Create, Update, Delete - while the query part will take care of the materialized views. This means

that that command part will own the create, update and delete while the query part will own the

reading statements. The following diagram should help understand the CQRS design pattern.

The above diagram displays how CQRS pattern is designed for incoming requests. The read

request will go to Query and the edit requests to command.

Real world example: In an Ecommerce application, there are microservices like Products, where

we need to populate the products page i.e. query the products service for list of products based

on condition. We are not doing any changes to the products here; we are simply retrieving

information or products from the catalogue. With multiple users querying the products list, this can

become quite a heavy load for the servers, which are performing all actions i.e. CRUD. A better way

is to implement CQRS pattern to have query for all the reads separately and command like create,

update and delete separately, which are not so frequently used. This also helps in security of the

products catalogue in a way, where only legitimate users are given access to the command, while

rest all users can use query for read operations.

API Gateway

Read

Write

Query

Command

User Interface

Users

Build Enterprise-Grade
Microservices using Design Patterns

11

Circuit breaker pattern

For any working process to be interrupted, Circuit Breaker pattern is used to stop the process of

request and response if the service is not working. This is important when we are dealing with

service-oriented concepts like Microservices. The caller calls a microservice without knowing if the

service endpoint is active, or if service is stopped. When no response is received, it retries the call

continuously. The problem gets worse when a client calls multiple microservices, or if there is a

workflow involving multiple microservices and one of these services do not respond.

To avoid such scenarios, a circuit breaker pattern is used where the client invokes a proxy rather

than a service directly. The proxy will behave as a circuit barrier. So, when the number of failures

crosses the threshold number, the circuit breaker trips for a time period. Then, all the attempts to

invoke the remote service will fail in this timeout period. Once that time period is finished, the

circuit breaker will allow a limited number of tests to pass through and if those requests succeed,

the circuit breaker resumes back to the normal operation. Else, if there is a failure, then the time out

period begins again.

This pattern is typically useful if a problem occurs with a microservice and tracing needs to be

done, as to which service is down by referring logs, circuit breaker pattern will help here.

API Gateway

Service - B

Service - C

Service - A A

B

C

Client

Circuit
Breaker

Build Enterprise-Grade
Microservices using Design Patterns

Decomposition pattern

The basic purpose of Microservice is an independent functionality co-existing in a larger enterprise

application designed with domain-driven model in consideration. One question we ask ourselves

is “Can I break down my application in multiple sub-applications without losing the functionality

and gaining advantages of upgradation, performance, teams and deployment?”

The answer to this question is Yes - Decomposition Patterns!

 We can use the decomposition patterns based on domain-driven design i.e. business functionality

or based on sub-domains. For example, please consider an Ecommerce application, we identify

the domains and build services for every function like orders, payments, customers, products. etc.

if we are decomposing by business capability.

In the same scenario if we design the application by decomposing by sub-domains, we can have each

class-based service. This means that we can reuse the same class Customer for customer

management, support, information, etc. Using the domain-driven design, we can break up the entire

domain model in sub domains, which have their specific model and bounded context helping

developers to create services around scope and this bounded context. The challenges for

decomposition pattern we see are - conversions i.e. migrations of large monolithic applications. These

challenges arise due to the complexity of these applications, the way they are designed and integrated

as a single application. The only way to decompose large monoliths is Strangler pattern or Vine Pattern.

Real world example: A circuit breaker pattern ensures stable performance in your microservices

by monitoring for failures and providing an alternate service or error message. Let’s say in

Ecommerce application, user clicks on add a product to the cart, and the cart service is down! The

system will freeze as the activity will wait for shopping cart service to register the product and if the

service is down, the wait will continue forever, freezing the browser and ultimately the transaction.

To avoid such kind of scenarios, circuit breaker pattern helps as it ruptures the call, showing user

correct message or routing the user to a different service and logging right information to system.

Build Enterprise-Grade
Microservices using Design Patterns

12

Strangler pattern or Vine Pattern

Strangler pattern quite represents a vine, which strangles a tree to which it is wrapped around.

When a typical migration from legacy application system to any latest architecture is performed,

very heavy code rewrite practices are needed by the system. In such cases, Strangler pattern can

help deprecating a legacy system slowly over time and adding new functionality incrementally

rather than getting entire system offline and do a complete overhaul. What this means is that two

separate applications (Original and re-factored) will co-exist side by side in the same space and the

refactored application wraps around or strangles the original application until you shut down the

original application.

Real world example: Let’s consider an application, a monolithic one, where a user visits a customer

care website for one of his products. In such a case, user must register himself, his products and

other information on the site for receiving support and other help needed to maintain the product.

The help application being very large to be a monolith needs to be broken down into

independent applications which can work together, however can co-exists separately for better

performance and management. Here the decomposition pattern plays important role where the

domain can be broken down in sub-domains and services created as per those sub domains.

Migration CompleteLater MigrationEarly Migration

Modern

Strangler Facade

Legacy Modern

Strangler Facade

ModernLegacy

Build Enterprise-Grade
Microservices using Design Patterns

13

Real world example: The best example of strangler pattern is Monolith to microservices migra-

tion. We are moving ancient ecommerce application from monolithic design to microservice

design. In such a case, let’s consider product catalog as one example, where the strangler pattern

can help. While the existing functionality is rendered by the product component, a product service

can be created and can co-exist side by side with the main component. Gradually, the features can

be switched off the monolith and turned on for Microservice. Gradually, the microservice becomes

the active function and replaces the monolith function.

References

DZone Microservices

Design Patterns for Microservices - DZone Microservices

Description: Some design patterns described

Microservice Architecture

Microservice Architecture pattern (microservices.io)

Description: Architecture Patterns

Microservice Design Patterns

Microservices Design Patterns | Microservices Patterns | Edureka

Description: Design patterns for Microservices.

Build Enterprise-Grade
Microservices using Design Patterns

14

https://dzone.com/articles/design-patterns-for-microservices#:~:text=Design%20Patterns%20for%20Microservices%201%20Decomposition%20Patterns.%20Microservices,Services%20must%20be%20loosely%20coupled.%20More%20items...%20
https://microservices.io/patterns/microservices.html
https://www.edureka.co/blog/microservices-design-patterns

Summary

We have seen the way design patterns are particularly useful for specific design requirements of

Microservices. The following table describes the patterns we have discussed and their benefits.

Design Pattern Benefit

API Gateway
Pattern

Common interface & management
for multiple microservices APIs.

Chain of Responsibility
Pattern

A chain of microservices with
one service calling another.

Shared Data
Pattern

Having a single database for multiple microservices
with distinct schema per microservice.

CQRS
Pattern

Read node responsible for select queries and edit node fo
update/edit queries to divide the responsibility and gain
performance benefits.

Decomposition
Pattern

Domain-driven design helps in decomposing the monolithic
application in multiple independent functionalities, which can
be managed separately as per the purpose of microservices.

Strangler or
Vine Pattern

Translating the legacy application in microservices piece by
piece i.e. both the architectures will co-exist till the functionality
is duplicated and legacy code is removed.

Circuit Breaker
Pattern

Breaking the calling of Microservices in situations,
where a microservice is not reachable or not working.

Aggregator
Pattern

Combination of multiple microservices
for composite functionality.

Build Enterprise-Grade
Microservices using Design Patterns

15

Conclusion

While taking certain decisions on how the

services will communicate with UI and

business logic, security and data privacy,

failsafe methods, versioning etc. which are

speciality of the microservice architecture,

these patterns need to be implemented to

ensure smooth functioning of the overall

system as the system is no more a single

system, in fact a composition of several

independent systems. These patterns will

help you take such decisions.

While designing the microservices, please

focus on how the services are going to

accomplish the task of working together as a

single application though maintaining

independent existence and these patterns

will be useful while taking important

decisions in this process.

So finally, what we understand from these

patterns is important from architect point of

view for every Microservice based solutions

we deliver. These patterns occur in the daily

design activities for any architect while

solutioning Microservice based architecture.

These patterns are used frequently while we

are designing microservice based

architecture and are considering

non-functional requirements like discovery,

availability, performance optimization etc.

There are many more such patterns which

you will implement as you design the

architecture. I have tried collecting some

basic ones which will help you get started

with the microservice design.

Build Enterprise-Grade
Microservices using Design Patterns

16

About the Author

LTI (NSE: LTI) is a global technology consulting and digital solutions company helping more than 400 clients succeed in a converging

world. With operations in 31 countries, we go the extra mile for our clients and accelerate their digital transformation with LTI’s

Mosaic platform enabling their mobile, social, analytics, IoT and cloud journeys. Founded in 1997 as a subsidiary of Larsen & Toubro

Limited, our unique heritage gives us unrivalled real-world expertise to solve the most complex challenges of enterprises across all

industries. Each day, our team of more than 33,000 LTItes enable our clients to improve the effectiveness of their business and

technology operations and deliver value to their customers, employees and shareholders. Find more at http://www.Lntinfotech.com

or follow us at @LTI_Global.

info@Lntinfotech.com

Rahul Kulkarni
Associate Principal, Enterprise Architect, LTI

As an Enterprise Architect, conducting enterprise analysis, design, planning, and

implementation, Rahul believes in leveraging a comprehensive approach for the

successful development and execution of strategy. He provides consultation on

Application Lifecycle Management (ALM), architecture strategies, opportunities, and

problem resolution. Serving as an advisor to senior business management on

business and information integration strategies, Rahul has worked on projects from

various domains and technologies focused on service-oriented architecture, IoT and

web-based solutions. Specialized in Microsoft technologies, Rahul has provided

various enterprise solutions in presales as well as delivery solutions.

Build Enterprise-Grade
Microservices using Design Patterns

