
Realign. Rebuild. Reengineer
Legacy Moderniza�on

Whitepaper

Author: Ritu Raj T�pathi

02

One old habit that large enterp�ses and tradi�onal players cannot always con�nue with

retaining legacy systems. In today’s fast-paced business environment, with new-age

technologies at play and the emergence of new and agile entrants in the market, some

sp�ng cleaning is a must.

Abstract

Technology is evolving at a never-before pace. Every day, tech giants are launching new

digital products and services, which have accelerated business agility, innova�on, and

adap�on to the dynamic business environment.

We are living in an era of ever-demanding consumers who want everything at the click of

a button. That’s why no company or business can take them for granted in this compe��ve

business scena�o. Instead, enterp�ses need to align their offe�ngs, products, services, and

expe�ences in line with the aspira�ons of the customers.

Successful companies like Uber and Amazon are already doing it by ingraining a culture of

transforma�on in their DNA. A proof of it can be seen in the number of deployments and

releases these organiza�ons are churning out every week, day, a minute, or even a second.

These kinds of rapid deployments and releases are possible because there is

corresponding modern microservices-based agile software architecture to underpin these

products and platforms.

Introduc�on

“If you want something new, you have to stop doing something old.” – Peter F. Drucker

Digital Economy: Transi�on to Transforma�on.

Digital technologies are disrupting the very core of business functions. It has brought traditional

players and the new era companies, born in the digital-native world, on a level playing field. These

new startups don’t have to carry the heavy baggage of legacy core systems.

Apple did it with the iPod, Aggregators like Uber, Ola, Oyo transformed commuting and

accommodation. Netflix changed the entire entertainment ballgame. Apps like Zoom and

Microsoft Teams are making holes in the aviation business with remote working and meetings

becoming the new default.

The efficiency and reliability of these systems are time-tested. So, replacing them is a difficult

decision for any CIO. Nonetheless, these systems have limitations. The major one being their

inability to integrate with the latest digital technologies and ecosystem. Does this mean we have to

live with these constraints and limitations? Fortunately, the answer is no.

It is only prudent that enterprises make the best use of their legacy core assets. They can select

many options based on the context, application maturity, and aspiration of the organization. The

organization should opt for an insightful SWOT analysis to select a modernization approach and

strategy.

Traditional and established players are at a critical juncture in today’s competitive environment.

New-age digital disrupters are building a brand-new, fortified IT landscape, while the older players

Is Legacy an Asset or a Liability?

To answer this, let’s use some numbers to gain perspective.

92 of top 100 banks and 9 out of top 10 Life and Asset Insurance players rely on IBM

mainframe for their core business operations.

03

Time to Build a New Legacy

are playing catch- up with legacy systems. It’s time they integrate innovative and digital

technologies to leverage their existing IT investments. So, does that mean, the legacy IT needs to

start from scratch? Fortunately, legacy is a viable and practical solution, but only if companies are

looking to align their existing systems with the ever-growing demand for digital technology. For

this, companies will have to chalk out an IT journey to digital from legacy. This comprises selecting

an optimum mix of applications, digital touch-points, and an economic and logical action plan to

accelerate this journey.

A Case for Modernizing Legacy

In this new era of digital transformation, you can’t win with obsolete tools and outdated

technology. Your business must find a niche and also leverage the strength of the partner

ecosystem.

It is not the question of if but when to adapt to these new digital technologies like API,

microservices, AI/ ML, IoT, blockchain, cloud, advanced analytics, RPA. We all know what happened

to Kodak and Nokia when they refused to adapt to the changing times. Success today is hinged on

the effectiveness of leveraging these digital technologies for your business.

Legacy modernization or app modernization is a strategy to transform IT assets and core legacy

systems with digital enablement within the existing IT landscape or framework. There is no

one-size-fits-all strategy but rather it depends on several factors, challenges and drivers.

Gartner predicts that every dollar invested in digital business innovation through to the

end of 2020 will require enterprises to spend at least three times that to continuously

modernize the legacy application portfolio.

04

Today, companies need to align their IT products, process data infrastructures and drive business

outcomes in the fast-paced business environment. Legacy applications can become a chokepoint

with delayed batch cycles, slow processing and lackluster web integration with new-age platforms.

This leads to slower rollouts and time to market.

When Does One Need Legacy Modernization?

1. When aligning current-day business strategy with IT systems

The cost for mainframes and software license fees can go into millions. Plus, they have limited

capabilities and a high cost of maintenance. If your enterprise is undergoing this situation, it’s time

to switch to legacy modernization.

2. If the TCO factor is giving you a tough time

There is a big mismatch between the capabilities of traditional legacy systems and the current

business expectations and demands. They are complex and high maintenance, since a lot of

systems use batch and online macros to facilitate access to these databases.

3. When there are databases involved

Legacy systems were made for enterprises to function a decade ago. They are not made for the

ever-demanding market scenarios and documentation requirements of today. This makes it

difficult for an easy transition or migration of these systems.

4. When you need to accelerate documentation and business processes

05

How to Go About Legacy Moderniza�on

This is a lift-and-shift based approach where applications are redeployed to other physical, virtual

or cloud infrastructure. It requires no recompiling, reconfiguring and readapting the application

codes, features and functions. That’s why this approach may not have any significant benefits apart

from the cloud-like cost optimization.

There are multiple approaches to modernization – here are some prominent ones:

Rehosting

This approach is based on migrating an application to a new runtime platform. While it may enjoy

some of the cloud-native services, it will make minimal changes to the code or adapt to the new

platform. Hence, it is just a cosmetic improvement but will not yield the core benefits of modern

architecture.

Replatforming

This approach is normally followed when the core systems become obsolete, complex and

counter-productive for the enterprise, which leaves the enterprise with no choice but to replace

them. It can be done with another packaged solution which stems from a modern IT architecture

and can help business leverage a digital application ecosystem. This new system could also be a

SaaS-based solution.

Replacement

This is the core area of focus where an application is fundamentally transformed and modernized

in true sense. It gets redesigned to take advantage of all modern architectural patterns, built on top

of cloud-native technologies like containers, microservices, service mesh, API management, etc.

Application functionality is architected to mimic the domain and capability that the organization

offers as a product or service. The build and deployment pipeline is automated to take advantage

of DevOps.

Re-engineering

06

Code is refactored to suit the requirement of a loosely coupled regime.

There should be a holistic assessment of the application landscape and portfolio to map the

applications against these two key dimensions:

a) The ability of applications to meet business requirement

b) Its complexity and size.

Applications and systems will end up being plotted in one of the four quadrants and the strategy

will depend on where particular application falls into. Modernization approach and strategy will

also factor in many other aspects like the overall strategy of the enterprise, cost, ROI, TTM, partner

ecosystem, spread across geography, verticalization, etc. The decision matrix is depicted below

07

B
us

in
es

s
C

o
m

p
le

xi
ty

/S
iz

e

Meets Business Requirements
Low

High

No Yes

Re-engineering
Re-architect/Modernize

Do Nothing & Retain

Legacy Application
Replacement

Migration

(Rehost/Replatform)

Focus of this offering is
Legacy Modernization using
Microservices Architecture

Pros Cons

How to Go About Legacy Moderniza�on

Re-engineering is the inside-out transformation approach, which means redesigning the IT

architecture from the core components to building a new set of functionalities. This can be done by

refactoring the code and leveraging new technologies, systems and platforms, which lead to better

competencies, scalability, agility and adaptability to modern-day IT requirements and technologies.

In this approach, all old applications are completed scrapped and rewritten using modern

architecture and cloud-native technologies like clustering and microservices. Here are the pros and

cons of this approach:

There are two ways of achieving this transformation through re-engineering:

A Case for Modernizing Legacy

• Huge investment required and difficult to

 justify ROI

• Risk associated with new system and
 functionalities with no option of rollback

• Prolonged wait time for business before the
 reengineering goes live

• Big bang approach which requires dedicated
 bandwidth/ attention of stakeholders

• No dependency on legacy code structure

• Clean and futuristic architecture

In this approach application is analyzed and logically decomposed using one of the patterns, This

can either be by decomposing by subdomain or by capability. Instead of a complete overhaul,

certain functionalities and features are planned, picked and prioritized for upgrades in a phased

manner. This prioritization should be based on business outcomes or the criticality of the feature.

Here are the pros and cons of this approach:

Incremental upgrade and coexistence

08

Reenginee�ng – Step by Step. Stage by Stage.
Irrespective of whether you opt for a complete rewrite or incremental approach, there is a set of

best practices and sequential phases for modernizing any application. It is advisable to bank on

proven tools, accelerators, and frameworks to fast track this engineering cycle. Here are the phases/

stages that best describe the approach recommended to achieve the benefit of app

modernization:

Organizations may or may not have the latest documentation to depict the as-is state of the

system. Even if it is available, there is a good possibility that it is not up-to-date and does not cover

all aspects of complex monolithic systems, which would have evolved over the years. There are

many tools available (like micro focus Enterprise Analyzer, Eclipse, Altova Umodel, etc). These tools

help in the following ways:

Discovery

• They reverse engineer the complex monolithic application

• Generate reports depicting object hierarchy and structure

• UML diagrams showcase relationship and interactions

• Save effort and time by tool-driven code analysis

• Expedites modernization initiative by drawing the as-is state

09

• Coexistence of old and new systems can lead

 to increased operation and maintenance cost

 during this period

• Both skillsets (new and old) required during

 this period of coexistence

• Less risky as compared to the big bang

 approach

• Can fall back on the old implementation

 using the strangler approach

• Incremental load increase to the new system

 and coexistence

• Quick win and benefits realization by business

• Faster time to market as the upgrade of

 individual features take less time compared to

 the whole rewrite

Pros Cons

Modern application architecture is heavily underpinned on microservices and container-based

architecture. These applications need to communicate effectively with each other and be a part of

the whole ecosystem. This demands the design approach to be API-led and API-first. Such an

approach leverages the following best practices and processes during design:

Design

• Open API specification compliant tools to define and design APIs

• Clear separation of API specification and implementation

• API gateway pattern to ensure security and centralized control

• Decompose monolith by sub-domains or capability

• Use of a 12-factor architecture principle (Summary of them is described below)

PrincipleSr. Description

Codebase

Dependencies

Config

Backing services

Build, release, run

Processes

1

2

3

4

5

6

One codebase tracked in revision control, many deployments

Explicitly declare and isolate dependencies

Store config in the environment

Treat backing services as attached resources

Strictly separate build and run stages

Execute the app as one or more stateless processes

10

Some of the typical output diagrams are depicted below as a sample.

Once specification and design are ready, you are all set to implement new features and

functionality using cloud-native principles. The following best practices can be used during this

phase:

Implementation

• Leverage Java-based entity object generator for the legacy code

• SDK/ adopter-based approach to connect with the legacy system

• Tool to create project chassis for microservices (Example.: spring cloud framework)

• Lightweight business process flow framework for headless implementation

• Creation of container compatible docker image for deployment

Automating the build and deployment process is an integral part of the modern

microservices-based architecture. It is recommended to use the following automation and DevOps

practices:

Build or Deployment Automation

• Tool for setting up CI/ CD pipeline (Jenkins)

• Use of standard code repository and version control (Git)

• Use of standard build tool (Maven)

• Automation of testing (Junit)

11

Port binding

Concurrency

Disposability

Dev/prod parity

Logs

Admin processes

7

8

9

10

11

12

Export services via port binding

Scale-out via the process model

Maximize robustness with fast startup and graceful shutdown

Keep development, staging, and production as similar as possible

Treat logs as event streams

Run admin/management tasks as one-off processes

As part of this paper, I have tried to put together different drivers of legacy modernization and the

role it plays in the digital transformation journey of an enterprise. There are many approaches to the

legacy modernization process, which vary according to the context, maturity level, and the future

roadmap of individual organizations.

Although there are many cloud platforms, which offer their variants of containerized services, it is

advisable to opt for an approach that does not lead to a vendor lock-in agreement. Therefore, the

enterprise strategy should be aligned to a multi-cloud approach and suited for hybrid

development. Also, an incremental approach should be followed rather than a big-bang approach

which will reduce the risk and also generate business benefits in a shorter duration. Technology is

evolving rapidly and hence it is preferable to leverage the available tools and platforms to strive for

short-term gains which is aligned to larger vision.

https://12factor.net/

https://martinfowler.com/

https://docs.aws.amazon.com

Building Microservices (O’Reilly book)

https://azure.microsoft.com/en-in/resources/designing-distributed-systems/

The Bottom Line

References

12

Once new feature functionality is ready and deployed in a container-based environment, it will be

expected to coexist with part of a large monolith application that is yet to be modernized. Strangler

pattern helps in routing part of the requests to new microservices and slowly increases the load

based on the confidence of successful processing. Contrary to the legacy environment, it is very

easy to scale in a containerized environment via a horizontal scale-out approach. Policy-driven or

autoscaling is possible to scale up or down based on user/transaction increase/decrease.

• Static code analysis (SonarQube)

• Integration with defect and requirement management tool (Jira)

• Use of service registry (Eureka or env specific)

• Container for deployment (Kubernetes, EKS, GKE, AKS)

Coexistence and Scaling

LTI (NSE: LTI) is a global technology consulting and digital solutions Company helping more than 400 clients succeed in a

converging world. With operations in 31 countries, we go the extra mile for our clients and accelerate their digital

transformation with LTI’s Mosaic platform enabling their mobile, social, analytics, IoT and cloud journeys. Founded in 1997

as a subsidiary of Larsen & Toubro Limited, our unique heritage gives us unrivalled real-world expertise to solve the most

complex challenges of enterprises across all industries. Each day, our team of more than 30,000 LTItes enable our clients

to improve the effectiveness of their business and technology operations and deliver value to their customers, employees

and shareholders. Find more at http://www.Lntinfotech.com or follow us at @LTI_Global.

info@Lntinfotech.com

Ritu Raj Tripathi
Practice Head - API
Leading API & Microservices practice within digital integration, LTI.

Two decades of experience in Information Technology services and

products. His area of expertise includes digital transformation,

integration, API, Microservices, cloud native technologies, App

Modernization, and large & distributed program execution.

BE from NIT Allahabad (MNNIT), EPLM from IIM Calcutta

